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Summary 

Orbit correction consists in adjusting the strengths of the corrector magnets to make the 
measured beam position match a predefined reference. In the LHC, this involves around 2000 
sensors and more than 1000 actuators that are distributed along both rings. The orbit 
correction scheme should be able to compensate for very slow orbit drifts in the range of a 10-2 

Hz but also for fast motions (vibrations) up to 1 Hz. In this paper we investigate correction 
schemes that could be used in either case. The choice of design formalisms is based on the 
experience we gained with the SPS and the LEP.  
 
 

1.  Introduction 

Orbit control will play a key role in the LHC due to the tight aperture. Depending on the 
emittance of the beam injected from the SPS, one can expect bad life times and loss of beam 
current when the orbit is not properly adjusted. Eventually, this will lead to a reduction of the 
integrated luminosity and machine efficiency. 

Until experimental data becomes available, the exact frequency spectrum of orbit 
distortions in the LHC will remain unknown. In this paper we will therefore base ourselves on 
the experience gained in LEP [1]. Over the duration of a LEP fill, the orbit was kept as close as 
possible (tolerances on the orbit RMS were 50-100 µm) to the reference by a slow integral 
feedback control loop. The loop applied corrections in both planes at a maximum rate of about 
2 corrections/minute. While the horizontal orbit was very stable and the drift almost never 
exceeded 0.2 mm over the duration of a complete fill, the vertical movements were fast, with 
integrated orbit drifts exceeded 4 mm RMS. The major part of the vertical orbit drifts in LEP 
was due to the movements of the superconducting low-β quadrupoles. The effects of those 
quadrupoles were enhanced by their large strength and betatron functions. Most of the vertical 
orbit correction was done using the orbit correctors installed next to the low-β quadrupoles. In 
the frequency range of 1 to 100 Hz, the orbit oscillation amplitudes were limited to 10 microns 
or less. Similar figures have been reported by HERA[2]. 

We expect the spectrum for the orbit motions in the LHC to be somewhat different from 
the one observed in LEP. There will be slow drifts (10-2 Hz) due to the ground motion [2] (as in 
LEP) and due to the decay of persistent currents at injection [3]. Movements at approximately 
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0.1 Hz are predicted at the start of the ramp due to the “snap-back” [4] and possibly during 
physics due to the beam-beam effects [5].  

To compensate slow orbit drifts at frequencies up to 1 Hz, we envisage a central process 
that will monitor the orbit continuously and applies corrections whenever the root mean square 
of the orbit drift exceeds a certain threshold. In this paper, we investigate the orbit correction 
schemes that could be used in such a global feedback loop. The same principles also apply to 
local orbit correction. We will concentrate on the correction algorithm, the data communication 
and the feedback control algorithm. The approach is general and could be envisaged for other 
feedback applications such as the tune loop, signals from the reference magnets or chromaticity 
control. 

2.  Correction algorithm 

Suppose that the vector X (size N) represents the beam position measured at the BPMs 
and the vector Y (size M) the corrector strengths. The task of orbit correction is to find a set of 
corrector strengths that will minimise the difference between X and a “golden” reference orbit 
named Xgold: 

 (X- Xgold) + AY = 0      (2.1) 

The response matrix A (dimension NxM) describes the relation between the corrector 
kicks and the beam position changes at the BPMs. In general, A is not a square matrix and 
cannot be inverted. For the most common situation where N>M, the system is over constrained 
and a correction algorithm will search for a least square solution by minimising ||(X- 
Xgold)+AY||2. The problem can be more complicated if the matrix is singular or (mathematically 
speaking) close to singular. This can be caused by design or when some monitors are not 
available. 

The two most popular correction algorithms are MICADO [6] and Singular Value 
Decomposition (SVD) [7]. MICADO is an algorithm based on Householder transformations 
that performs an iterative search for the most effective corrector. In the context this note, we 
will consider only SVD because it can be cast in a very simple form. Yet it should be clear that 
it is straightforward to replace SVD by MICADO. The SVD algorithm allows us to write 
matrix A as the product of three matrices :  

 A = USVT       (2.2) 

U and V are orthogonal and are obtained from an eigenvalue analysis of the covariance 
matrix of A. Matrix S is a diagonal matrix containing the singular values si : 
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The pseudo-inverse matrix Â of A is given by : 

 Â=Vdiag(1/s1,…)UT     (2.4) 

where Â can be made non-singular by zeroing all elements of S-1 with si < ε, a predefined 
cut off. The solution of the least square problem is now : 
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 Y = - ÂX       (2.5) 

  A priori it is sufficient to calculate Â only once before beam is injected. In practice Â 
must be updated regularly to keep track of faulty monitors and orbit correctors. When there is 
circulating beam, the task of the feedback loop consists of performing (2.5) in real time. 

The eigenvalues si cover 2 to 5 orders of magnitude for large machines such as SPS, LEP 
or LHC (figure 1). The weights si are approximately proportional to the RMS of the orbit 
response corresponding to its associated eigenvector (the columns of matrix V). Correction of 
large-scale orbit patterns is done with the large eigenvalues while smaller values correspond to 
smaller structures such as local bumps. The number of eigenvalues retained will therefore 
determine the spatial resolution of the correction. Correction of orbit drifts with respect to the 
“golden” reference orbit can in general be done with a few (around 20) large eigenvalues. When 
the number of eigenvalues is increased, the orbit deviation with respect to its reference can be 
reduced but it also makes the orbit correction more sensitive to noise on the BPM readings. A 
frequently used solution is to use only a restricted set of correctors and monitors, chosen such 
as to sample the overall orbit features well enough. In this way the size of the linear system can 
be reduced significantly. 

0 20 40 60 80 100 120
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Weight index

lo
g(

si
/s

1)

SPS 

Orbit response eigenvalues 

  0 50 100 150 200 250 300
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Weight index

lo
g(

si
/s

1)

LHC 

Orbit response eigenvalues 

 

Figure 1 : SVD eigenvalues of the SPS (left) and LHC (right) vertical orbit.  The very small si with 
si/s1 < 10-4 correspond to almost singular solutions in the low-β regions of the interaction regions. No 
such singularities appear in the very regular lattice of the SPS. 

The vector of correction kicks Y has size N (approximately equal to 250 for a single beam 
pipe and a single plane). It is possible to apply the control algorithm to this kick vector or to the 
eigenvectors that represent an orthogonal basis. 

3.   Architecture 

Similar as in LEP, a centralised solution for orbit correction is envisaged where a single 
processor receives and sends data to equipment front ends that are distributed around the ring. 
The actuators of the system are the orbit corrector magnets and the associated power converters 
(approximately 1000 in total). The power converter controllers are accessed via a deterministic 
fieldbus. The sensors are BPMs that measure the transverse position of a longitudinal slice of 
the bunch train. A single BPM has 4 button monitors (2 per plane) and 8 BPMs will be 
connected to a single BPM processor front end (approximately 1000 in total). The present 
estimate is that each BPM will produce 5 bytes of data at a rate of 10 Hz. For 500 BPMs per 
ring, this corresponds to a datastream of 50 kBytes/s per beam pipe when data is produced at a 
rate of 10 Hz. 
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4.   Dynamics of the system 

4.1 Time delay and time constants 

Time constants and time delays are important in a feedback loop because they limit the 
performance of the controller and determine the robustness of the system. In our case, the plant, 
(i.e. power converter and associated magnet, the beampipe and the overall time delay) induce 
the entire dynamics we observe. 

The power converter and the associated corrector magnet have a natural time constant of 
L/R where L is the self-inductance of the superconducting corrector magnet and R the warm 
cable resistance. For the superconducting corrector magnets, the L/R time is rather long (about 
200 s, open loop bandwidth of about a mHz). However, during the injection, the bandwidth of 
the system can be increased because there is more power available than required for steady state 
operation.  

The beam pipe acts as a low pass filter and thus introduces another time constant. 
However, it will be shown in section 5 that it plays only a minor role in the design of the loop. 

Finally there is the total time delay between sensors and actuators. It is the sum of the 
time needed for data acquisition, data communication across the site and computing. A delay in 
a feedback system leads to a phase shift and this will always degrade the stability and the 
damping of the system. Within limits, time delays can be compensated for by adjusting the 
feedback gain and/or by using lead or lag compensation. For orbit control, the total time delay 
is rather large and it limits the performance of the feedback system.  

4.2 Time constant of power converter and corrector magnet 

 The cold LHC orbit corrector magnets MCBH(V)† have an inductance of 7 H and a warm 
cable resistance of 30 mΩ which yields L/R = 230 s as the natural system time constant. A RST 
type control algorithm is driving the 4-quadrant power converter (Vmax , Imax = ± 8 V, ± 60 A). 
This system is using the available power to accelerate the response of the system [8].  

 The steady state system load is at most Vstat = 60 A x 30 mΩ = 1.8 V when the corrector is 
set to its maximum current, but at injection this value will never be reached (otherwise it would 
not be possible to ramp). For large kicks (20 µrad or 1 A at 450 GeV) the response of the 
system power converter & magnet can be accelerated by a factor Vmax/Vstat = 4 which gives a 
time constant of 58 s. For small kicks, (2 µrad or 0.1 A at 450 GeV), the ratio is Vmax/Vstat = 
2000 which gives a time constant of 0.1 s. 

 The maximum kick strengths during injection and in coast will determine the effective 
time constant of power converter and magnet. The most important variations of the orbit are 
expected to occur during the snap back at the start of the ramp and during the squeeze. In the H-
plane and for a random field error b1 of 0.75 units (see [9]), the orbit RMS change is 800 
microns (covering a range extending from 250 to 1750 microns). Using an SVD correction with 
50 eigenvalues, the RMS can be reduced to 70 microns (figure 2). The associated kicks are 
ranging between 0 and 2 µrads with a kick RMS of 0.5 µrad and evolve during the snapback.  

 During acceleration and coast, there is less additional power available. Around 0.2 Volts 
are needed during the ramp (inductive term). Up to  ~ 2 Volts are needed to compensate the 

                                                 
† Note on the warm orbit correctors :  in IR3 and IR7 there are 2 warm correctors per plane and per beam, which 
is insufficient for a local orbit correction. Including cold correctors means that even local orbit correction is 
dominated by the time constant of the cold corrector magnets.  
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Ohmic dissipation in the warm cables in coast (steady state load due to the resistive term). At 
top energy, the effect of the same kick is reduced by a factor 20 compared to injection energy. 
To get the same beam deflection the kick strengths thus have to be about 20 times stronger. As 
a consequence, the effective time constant of the power converter & corrector magnet is now 
about 60 s at the end of the ramp and during physics. Consequently the feedback system has no 
gain for errors at 1 Hz. However, it is still possible to use the loop provided a gain-scheduled 
controller is used. In this scheme, the beam energy is used as an input and the feedback gain is 
reduced as the energy is increased. 
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4.3 Time constant of beam pipe 

The response of any magnet will be affected by eddy currents in the vacuum chamber, 
which act as a low pass filter with a first order transfer function. The characteristic time 
constant is given by [10] : 

ρ
πµτ
2
0 bd

ec =     (4.1) 

where b is the radius of the vacuum chamber (2 cm in the cold regions, 4 cm in the warm 
regions), d the thickness of the copper plating (50 µm cold and 0.85 mm warm) and 
ρ the resistivity  (1.7 10-10 , RRR =100 cold, 1.7 10-8 warm). This yields a time constant of 12 ms 
for cold and 2 ms for warm chambers. Note that the time constant of the beam pipe is negligible 
compared to the time constant of the power converter and the corrector magnet (around 100 
ms).  

4.4 Total time delay 

There will be a time delay between actuators and sensors due to the transport of data 
across the LHC site via the computer network. A first guess of the delay can be made using 
measurements from the SPS. A thousand 1 kByte data packets were send from building BA2 to 

Figure 2 :  

Histograms of orbit errors and associated 
corrector kicks for a b1 random field error of 
0.75 units using SVD and 50 eigenvalues  

Top left : RMS of the uncorrected orbit.  

Top right : RMS of the corrected orbit.  

Bottom left : RMS of associated kick strengths.  



 

- 6 - 

building BA5 using identical end nodes (Power PCs at 200 MHz running LynxOS operating 
system). Figure 3 (left) shows the time delay when using TCP/IP. TCP is a protocol that was 
designed to provide a reliable flow of data between hosts. It is using timeouts, checksums and 
acknowledgements to throttle the data flow and to ensure that data is received on the other end. 
Reliability is provided in a non-predictive manner and it is difficult to establish a data flow with 
a fixed time delay. Most data packets are delayed by 2.3 ms but data can occasionally arrive 
much later. 
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Figure 3 : Histograms of time delays when sending 1000 one kByte packets from BA2 to BA5 via the 
SPS machine network on 200 MHz Power PCs with LynxOS. Left : using the TCP/IP protocol. Right 
: using UDP/IP. The figure on the right also shows the time delay for ATM-AAL5 [11]. 

Figure 3 (right) shows the time delay for UDP/IP, which is a much simpler protocol than 
TCP. It just sends the data from one host to another without verifying whether the data has 
arrived. The jitter on the time delay is thus much smaller (2.3 ms time delay with a jitter of 10 
% in figure 3).  

Another time delay is due to execution of the SVD (or any other) correction algorithm. 
The algorithm retained 20 singular values out of 500 for corresponding to a single plane and 
one beam pipe. Figure 4 shows histograms when executing algorithm 100 times on different 
types of CPUs. The years in the figures indicate the time when these CPU’s were first used at 
CERN.  
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Figure 4 : Histograms of execution times for 100 SVD orbit corrections (500 BPMs and 300 correctors) on a 
various types of HP-UX Unix workstations (left) and on various types of LynxOS Power PCs (right).  The 
years in the figures indicate the time when the CPU’s were first used at CERN. Note the spread in execution 
times on UNIX and the absence of this when using a LynxOS. 

The execution time depends on many board specific issues such as the processor speed, 
the compiler and the operating system. Note also that on a time-sharing operating system such 
as Unix, the CPU time varies as a function of the machine load (figure 4, left). A real time 
system such as LynxOS allows reservation of system resources and does not show such 



 

- 7 - 

variations (figure 4, right). For one of the most performing Power PCs that is presently used in 
operations, the execution time of a single SVD cycle for one beam pipe and a single plane is 
about 20 ms.  

Finally, there is a time delay induced by the power converter control system. The new 
corrector reference is communication via a gateway and a fieldbus to the power converter 
controller. The estimated minimum induced delay is 20 ms-50 ms. 

 

Delay source Min  [ms] Max [ms] 

Data Acquisition 20 20 

Network 2.5 20 

Correction algorithm 10 30 

Power Converter Control 20 50 

Total 52.5 120 

   Table I : Summary of time delays for LHC orbit control 

5. Controller Design 

5.1 Definitions 

 Before entering the subject of control engineering, some definitions are reviewed here. 
More information on this subject can be found in literature on control engineering [10,11].  

• The system to be controlled is usually referred to as the plant. 

• An open loop system is a system where the measurements from the output (the sensors) 
are not used to tune the inputs (the actuators). Predefined actuator settings are provided 
to make the plant behave as desired. No correction of the setting is done afterwards. An 
example of an open loop system is when a LHC reference magnet is used to modify the 
corrector magnet settings in the machine. 

• Feed-forward control is where the actuator settings are changed in accordance to 
changes in reference or other settings. Even in this context, the correction has no direct 
effect on the reading of the sensor. An example of a feed forward system is the SPS tune 
correction : the tune is measured on one cycle and corrected a few cycles later. 

• Feedback or closed loop control is where the actuator has a direct effect on the sensor 
reading. This way the disturbances entering the system can be compensated for. In 
many slow stable plants (where the deviations do not accumulate), the operator in fact 
computes the corrections necessary to bring the plant back to its desired operating point. 
The subject of control engineering deals with automating this process. The LEP Q-loop 
was an example of a feedback system.  

• The closed loop bandwidth of the system plays an important role in disturbance 
rejection. The closed loop bandwidth is defined as the maximum frequency at which the 
feedback loop can reduce the effect of sinusoid injected into the loop. For example, a 
feedback loop with a closed loop bandwidth of 1 Hz will suppress the amplitude of a 
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sinusoidal error signal at a frequency of 0.5 Hz with a factor 2, at a frequency of 0.1 Hz 
with a factor 10 and so on.  

• The sampling time is time between two consecutive observations and corrections. Faster 
sampling gives better feedback performance because one observes and corrects the 
actuator on a shorter timescale. If the system is unstable (a small error pushes the 
system away from its operating point and the error accumulates), then the sampling time 
needs to be shorter than the natural time scale of the plant, so that the actuator settling 
can be detected and corrected if needed. However, for stable plants, it is possible to 
have a sampling time that is much longer than the natural time scale of the plant. The 
sampling theorem that states that in order to reconstruct a continuous signal from 
samples of that signal, one needs to sample at least twice as fast as the highest frequency 
of that signal. In practice however, the theoretical lower bound is not sufficient in terms 
of the quality of the desired time response and sampling rates of 20 to 30 times the 
closed loop bandwidth are used. The purpose is to reduce the delay between a command 
and the system response to this command.  

• The gain margin of a closed loop system is the factor by which the gain can be 
increased before the system becomes instable which is usually when the phase shift is 
approaching 180 degrees. The phase margin is the difference between the induced 
phase shift and 180 degrees when the gain of the system is equal to 1. The phase margin 
is a measure of how much additional phase lag can be tolerated in the loop before 
instability occurs. 

5.2 Design approach 

 There are two basic design approaches based on classical and modern control theory. 
Classical control theory is a frequency domain approach using the Laplace transform and 
techniques such as root-locus and frequency response. With techniques based on transfer 
functions, it is possible to design a classical three-term controller (PID). Modern control theory 
is a time domain approach based on ordinary differential equations. It is also termed the state-
space approach, since it uses the concept of states – the minimum set of variables necessary to 
completely describe the current status of the system. Although the state space method is very 
different from the transform technique, one ends up with nearly identical controllers in the end. 

 In addition, there is a principle difference depending on whether time is treated as a 
continuous or discrete entity. If time is discrete, we enter the area of digital control and digital 
controllers are used by most present day control systems. The frequency domain approach for 
the digital control theory is uses the z-transform (instead of Laplace transform for continuous 
systems), while the time domain approach uses difference equations (instead of differential 
equations for continuous systems). 

 

 Continuous Discrete Techniques Literature 

Frequency Domain Laplace transform z-transform Transform techniques Classical Control 

Time Domain Differential 
equations 

Difference 
equations 

State space Modern Control 

   Table II : Overview of standard design approaches in control engineering 

 In what follows, we will solve the problem of LHC orbit control in the frequency domain 
(transform techniques) using a discrete setting. A detailed description of this method can be 
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found in [11]. It will be shown that a simple PI controller is sufficient to place the time 
constants of the system at their desired locations. 

 

Figure 5 : Matlab Simulink® simulation model for LHC orbit control. 

5.3 Design of a Discrete Controller in the frequency domain 

Figure 5 shows the Matlab Simulink model that was used to design the controller using 
proportional (P), integral (I) and derivative (D) control terms. The discrete time transfer 
function of the PC magnet and the beam pipe has a sampling time of 100ms (10Hz). The time 
constant of the Power Converter and magnet is 0.1 s (assuming operation at injection energy) 
and the time constant of the beam pipe is 0.01 s. The system delay is approximately one 
sampling interval to account for which adds an extra pole at the origin. The discrete overall 
transfer function is: 
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A PI controller can be designed for this transfer function using the standard loop shaping 
technique of “pole-zero” matching. The PI controller transfer function is given by:  
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This PI controller is introducing a pole at z=1 and leaves a zero to choose. To cancel the 
pole of the plant with the zero of the controller, it is required that 1-Ki/Kp = 0.368 or Ki = 0.632 
Kp. This leaves the gain Kp to choose. With a large Kp we get a good disturbance rejection, but 
we also increase the risk of making the system unstable. Root-locus is the standard technique to 
deal with this problem. Figure 6 shows the root locus plot for our system indicating the poles 
(indicated with x) and zeros (indicated with 0) of equation 5.1 using a controller with a gain Ki 
= 0.632 Kp and a gain Kp that is varied from zero to infinity. 
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Figure 6 : Root locus plot for the LHC orbit feedback loop using 
PI control. Poles are indicated by x and zeros by a 0. 

 On the horizontal axis (from left to right) one finds a zero due to the sampling, a pole at 
the origin due to the overall time delay, a “matched” pole-zero pair due to the Power Converter 
& magnet and the PI controller and, finally, a pole from the PI controller.  
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Figure 7 : Bode plots corresponding to the Root Locus of figure 6. 

 If a proportional gain of 1 is selected, the system can reduce a sinusoid at 0.1 Hz by a 
factor 8 but there is no reduction for signals at 1 Hz. This can be deduced from the 
corresponding Bode plot given in figure 7. This figure also indicates the phase margin of 33.2 
degrees and the gain margin of 1.6.  

 Other controllers and/or optimisation procedures have been considered and are listed in 
table III. For example, instead of fixing the zero of the controller to coincide with the pole of 
the plant, it can be considered as an additional decision variable to improve the gain at 1 Hz. 
An optimisation routine allowed choosing the zero while enforcing a phase margin of 30 
degrees. The optimised PI controller shows an improvement in gain at 1Hz at the cost of 
reducing the gain at 0.1 Hz. 

Alternatively, a PID controller can be designed to increase the bandwidth and reduce the 
influence at 1Hz. Unfortunately, only marginal improvement (30% reduction for 1 Hz) was 
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obtained (table III) which is basically due to sampling at 10 Hz while having a time delay of 
100ms. This means that there is not much margin for disturbance rejection at 1Hz. It should 
also be noted that the derivative term makes the system more sensitive to BPM noise, which 
could pose a problem with low intensity (pilot) bunches. 

To compensate the time delay, a Smith predictor can be used. A Smith compensator is 
feeding back a simulated plant output to cancel the true plant output and then adding in a 
simulated plant output without the delay. The derivative term does not bring an improvement in 
performance anymore, so only a PI controller with Smith predictor has been considered (table 
III). It can be seen that the gains are considerably higher with the Smith predictor. However, 
Smith predictors are more difficult to tune than simple PI controllers. 

 A sampling frequency of 20Hz gives a consistently better performance in any case. 

 

Controller Gain at 1 Hz Gain at 0.1 Hz Kp Ki Kd 

PI – 10 Hz 
(Standard) 

1.01 10.56 1 0.632 - 

PI – 10 Hz 
(Optimized) 

1.24 7.92 1.49 0.493 - 

PID – 10 Hz 
(Optimized) 

1.32 15.86 1.39 1 0.605 

PI – 10 Hz (Smith 
Predictor) 

2.2 22.2 2.2 1.39 - 

PI – 20 Hz 
(Standard) 

1.25 12.50 1 0.394 - 

PI – 20 Hz 
(Optimized) 

1.39 10.45 1.45 0.327 - 

PID – 20 Hz 
(Optimized) 

1.80 23.4 1.42 0.739 1.65 

PI – 20 Hz (Smith 
Predictor) 

6.2 62.6 5 1.74 - 

Table III : Performance comparison of different controllers. 

6. Conclusions 

Orbit control will play an important role in the LHC due to the tight aperture. During a 
physics run, the closed orbit will be perturbed by the movement of the triplet quadrupoles, the 
β-squeeze and by the decay of the persistent currents. The maximum frequency of the orbit 
perturbation has been estimated at 0.05 Hz. In this paper, it has been shown that a properly 
designed feedback loop can eliminate such orbit distortions during injection and at the 
beginning of the ramp. For example, a proportional–integral control loop that samples at 10 Hz 
and that has a total time delay of 100 ms can reduce orbit errors at frequency of 0.1 Hz with a 
gain of 8. In all cases, a considerably better performance can be obtained when the sampling 
frequency is increased and/or when the total time delay is reduced.  
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