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Summary

During the installation phase of the LHC, a beam test of a complete LHC arc may be performed
in the year 2006. One of the motivations for such a test is the experimental determination of the
field errors of the main dipole magnets directly with beam. The possibility of obtaining useful
information on certain field errors from an analysis of the trajectory response to orbit corrector
kicks has been evaluated. The influence of monitor noise and calibration errors has been tested.
This first study indicates that under the conditions that have been evaluated, it is possible to
determine the average a2, b2 and b3 field errors of the main dipoles and the average b2 field error of
the main quadrupoles and perform a check of the test bench measurements of the magnets during
the sector test.

1 Introduction

The installation of the LHC machine in the former LEP tunnel will take place between 2004
and the end of 2006. During that period the eight sectors (or arcs) will be installed and
commissioned one after another. In 2006 it will be possible to inject low intensity beam
into sector 8 to 7. Besides providing a system check for many elements, in particular beam
position and beam loss monitors, this test may also allow to verify the field quality of the
LHC magnets directly with beam. Since during such a sector test the only diagnostics is
obtained through trajectory measurements of approximately 50 beam position monitors in
each plane, the effects of the field errors must be sufficiently large to be detectable from a
single pass trajectory measurements.

This note first describes a procedure to extract information on a machine model from
trajectory or closed orbit analysis based on the LOCO program [1]. The data analysis
procedure is then applied to simulated LHC trajectories including the effects of magnetic
field errors,of monitor noise and of calibration errors.
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2 Orbit Response Analysis

The analysis of the machine optics in terms of orbit response is based on the relation between
the beam position measured at the location of N beam position monitors (BPM) represented
by a vector ~u

~u =




u1

u2

...
uN


 , (1)

and a set of M dipole magnets (correctors) deflections (kicks) represented by a vector ~θ

~θ =




θ1

θ2

...
θM


 . (2)

Orbit position and corrector deflections are related by a response matrix R (dimension
N ×M),

~u = R~θ . (3)

The element Rij of the response matrix corresponds to the orbit shift at the ith monitor due
to a unit kick from the jth corrector. For a linear optics, matrix R does not depend on the
kick strength, respectively orbit amplitude, and element Rij is given by

Rij =

√
βiβj cos(|µi − µj| − πQ)

2 sin(πQ)
(4)

for a closed orbit and by

Rij =

{ √
βiβj sin(µi − µj) µi > µj

0 µi < µj
(5)

for a trajectory. β and µ are the betatron function and phase advance, Q is the machine
tune. Matrix R holds a large amount of information about the machine optics, albeit in a
complex and highly entangled form. On the other hand, R can be determined easily and in
a non-destructive way.

The LOCO program [1] is a fit program that is designed to match a measured orbit
response matrix of a ring or line with the machine model while properly taking into account
the monitors and orbit corrector calibration errors. Orbit corrector and BPM roll angles
can also be determined. LOCO has been used in various places, including the SPS where
problems with the horizontal orbit correctors, most likely inter-turn shorts, were discovered
with the help of LOCO [2].

2.1 LOCO Analysis Principle

To use the information contained in the response matrix, the first step consists in building
the vector ~V obtained by the difference between the measured and the modelled response
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matrix. The elements of this vector are

Vk =
Rmeas

ij −Rmod
ij

σi

∀i, j (6)

where σi is the measurement noise of the ith monitor. The norm of vector ~V represents the
normalized error of the machine model with respect to the measurement.

The goal of the fit procedure is to minimize the norm of vector ~V (and therefore of the
difference between model and measurement)

‖~V ‖2 =
N∑

k=1

V 2
k = minimum . (7)

by adjusting Nf fit parameters related to the machine model, to the monitors and to the orbit

correctors. For correctly evaluated Gaussian errors, ‖~V ‖2 should be distributed according

to a χ2-distribution. The expected minimum value for ‖~V ‖2 is given approximately by the

number of elements of ~V minus the number of fit parameters. The value of the minimum
provides a statistical test of the fit quality and of the correct assessment of the BPM errors. A
minimum value that is too low (high) indicates that the errors σi are over(under)-estimated.

To perform a fit of the response, Nf parameters cl must be selected, and the dependence

of each element of vector ~V on each parameter cl must be evaluated. The resulting sensitivity
matrix S with elements Skl defined by

Skl =
∂Vk

∂cl

(8)

can be used to approach the solution of the minimization by linearizing the problem. The
three main categories of parameters are :

• BPM calibration factors, where Skl = −Rmod
ij /σi.

• Corrector calibration factors, where Skl = Rmod
ij /σi.

• Optics model parameters (magnetic strengths, elements misalignments...). For such
parameters, the sensitivity must be evaluated with a modelling program like MAD [3]
using a linear approximation

Skl =
Rmod

ij (cl + δcl)−Rmod
ij (cl)

δcl σi

(9)

where the response matrix change must be evaluated for a selected increment δcl of
each parameter. Equation 9 corresponds to the local fit gradient and the increment
must be chosen carefully.

The norm of vector ~V is minimized iteratively by solving the linear equation

~V + S∆~c = 0 (10)
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for the increment ∆~c in the parameter vector ~c. This equation is identical to the equation
that must be solved for orbit corrections (Equation 3), we can therefore apply the usual
least-square algorithms (SVD [4], MICADO [5]) to solve for ∆~c. Once a new value of

~c → ~c + ∆~c is obtained, the procedure must be iterated and the model and vector ~V
updated. In particular, the sensitivity matrix (Equation 8) must be re-evaluated around
the new optimum and Equation 10 must be solved again. This procedure is iterated until a
stable solution is found, i.e. when ∆~c ' 0.

It is important to note that matrix S is actually rank deficient (i.e. ’singular’) : there
are an infinite number of solutions obtained by multiplying both the orbit corrector strength
and the orbit change by the same factor. For this reason it is not possible to determine the
absolute calibration of orbit monitors or corrector magnets from the response matrix alone.
For the horizontal plane the absolute scale can be obtained by a known energy change over
the RF frequency. The radial movement can be used to calibrate the absolute scale of the
horizontal monitors.

Because of the singular nature of matrix S, Equation 10 is solved using the Singular
Value Decomposition algorithm [4]. The SVD algorithm is a powerful tool to handle singular
systems and to solve them in the least square sense. For a matrix S of dimension n × m
with n ≥ m the singular value decomposition has the form

S = UWVT = U




w1 0 ... 0
0 w2

... ... 0
0 ... 0 wm


VT , (11)

where W is a diagonal m × m matrix with non-negative diagonal elements. VT is the
transpose of the m×m orthogonal matrix V,

VVT = VTV = I , (12)

while U is an n×m column-orthogonal matrix

UTU = I . (13)

The least-square solution to Equation 10 is

∆~c = VW−1UT ~V (14)

where W−1 is the ’inverse’ of matrix W, with all singular elements 1/wk > 1/ε set to 0.
ε > 0 is a selected cut-off value that can be adapted for each data set depending in particular
on input conditions (noise...).

For a machine with N BPMs and M corrector magnets per plane, the size of matrix S is

• (2×N×M)×(2×(N +M)+Nf ) if the coupling terms between the planes are ignored,

• (4×N ×M)× (2× (N + M) + Nf ) if the coupling terms are included,

since the number of parameters must a priori include the calibration factors of all BPMs and
correctors (2 × (N + M)). The matrix size grows rapidly for large machines. For the SPS,
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N ∼= 120 and M ∼= 110, and S has dimensions 26′400 × 460. For the LHC, N ∼= 500 and
M ∼= 280, and S has dimensions ∼ 280′000 × 1′600. While for the SPS the entire ring can
still be handled, it is essentially impossible to handle matrices of the size required for the
LHC. In practice the problem can of course be split into smaller ’problems’ by using only a
subset of the orbit correctors or orbit monitors.

2.2 The LOCO Software

LOCO consists in a collection of FORTRAN programs to fit the orbit response and generate
automatic MAD scripts at each iteration. The original program has been slightly modified
and the following features have been added and changed.

• The possibility to use BPMs that measure only a single plane (horizontal or vertical)
has been added, mainly for the SPS and the transfer lines.

• The MAD script generation has been improved to handle transfer lines (or single turn
trajectories) as well as rings.

• An automatic rejection of BPMs with gain factors that are outside tolerances (typically
below 0.25 and above 2.5) has been added.

• The possibility to re-normalize the corrector and BPM calibrations by a common scale
factor between to iterations.

• A program was added to generate simulated measurements as input to LOCO. This
program reads MAD output data and re-formats the data to be suitable for LOCO.
The user has the possibility to add BPM noise, BPM calibration factors and corrector
strength errors to generate realistic input data for LOCO. This program was used
for the present study to generate the input data for the simulated fits starting from
trajectories generated with MAD.

3 Response Simulations and Fits

3.1 Magnetic Field Expansion

The magnetic field expansion used for the LHC is [6]

By + iBx = Bref

∞∑
n=1

(bn + ian)(
x + iy

Rref

)n−1 (15)

where subscript n = 1 refers to a dipole, n = 2 to a quadrupole field and so on. The terms a
and b correspond to the skew and normal harmonics. Bref represents the reference magnetic
field at the reference radius Rref of 17 mm. For each harmonic the field error can be split into
a systematic component that is identical for all magnets of the ring or of a sector and into
a random component that varies from one magnet to the next. The field errors can be due
to geometric effects, to persistent currents or induced by the ramp. A detailed description
can be found in Reference [7]. In our case, only geometric and persistent current errors are
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Figure 1: Example of the trajectory over one arc due to a 40 µrad kick of a vertical orbit
corrector at the beginning of the arc, for a machine without any field errors in the main
dipoles and quadrupoles.

of interest. In the LHC convention one unit of field harmonic corresponds to b(a)n = 10−4,
and this unit will be used throughout this document for all field errors.

3.2 Simulation Input

The simulations were performed for arc 2-3 of LHC ring 1, which is in principle equivalent
to arc 8-7 of LHC ring 2 but simpler and faster to run within MAD. In any case the results
should not differ significantly between arcs. The machine model is based on a MAD8 V6.2
thin lens model. Field errors are generated and applied with the standard LHC MAD scripts.

The simulations are based on 12 horizontal and 12 vertical kicks of 30 µrad each using
the correctors in the first half of a sector. The horizontal orbit corrector range starts with
corrector MCBCH6.R2B1 and ends with corrector MCBH30.R2B1. For the vertical plane
the corrector range is MCBCV7.R2B1 to MCBV29.R2B1. Another identical set was included
with kicks of 40 µrad using the same orbit correctors, giving in total 48 different responses.
52 BPMs were used in each plane, from BPM.10R2.B1 to BPM.7L3.B1. For kicks of 40 µrad
the maximum trajectory excursions reach approximately 8 mm. Such excursions should be
just acceptable for single passage provided the emittance of the beams is close to nominal
value. An example of a trajectory over one arc is shown in Figure 1 for a vertical kick of
40 µrad at the beginning of the arc.

The choice of monitors and correctors has not been optimized, but corresponds to a first
guess. The two different kicks strengths are used to help separate effects from linear (a2 and
b2) and non-linear (a3, b3 and higher) errors. In the event of a test with beam, a significantly
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larger data set should be acquired to obtain the largest possible amount of information. The
main aim of the selection of responses used here is to evaluate if a measurement is at all
meaningful.

In practice, the trajectory (or orbit) responses are obtained from the difference of two
measurements, one without kick (the reference) and one with a kick. Obviously it is possible
to record more than one trajectory for each case and calculate an average to reduce the
effects of various noise sources. For a reference trajectory that is well corrected and with
an r.m.s. that is significantly smaller than the r.m.s. change due to the corrector kicks,
the situation is roughly comparable to a situation of a perfectly centered trajectory. For
that reason, alignment errors as well as b1 and a1 field errors have not been included in the
simulations at this stage.

3.3 Trajectory Response and Field Harmonics

The effect of the main harmonic field errors of the dipoles, namely b2, a2 and b3 is shown in
Figures 2 to 4. The errors include the geometric and persistent current contributions and
are generated according to error table 9901 [7]. Both systematic and random field errors are
included.

Of particular interest is the b3 harmonic which affects the machine chromaticity. The
effects of the expected b3 field error in the main dipoles (MB) are shown in Figures 3 and 4
for orbit correctors deflections of 40 µrad. The horizontal and vertical magnetic fields due
to a b3 component are

Bx(x, y) =
2Brefb3

R2
ref

xy (16)

and

By(x, y) =
2Brefb3

R2
ref

(x2 − y2) (17)

where x and y are the horizontal and vertical coordinates of the beam.
For a horizontal trajectory excursion, Bx = 0 while By ∝ x2 has always the same sign,

leading to a systematic horizontal orbit shift visible in Figure 3, top plot. For a vertical
trajectory excursion, Bx = 0 while By ∝ y2 has always the same sign, leading to a systematic
coupled horizontal orbit shift visible in Figure 3, bottom plot.

The trajectory changes due to b2, a2 and b3 are sufficiently large and different in their
pattern that they should be disentangled by a fit. The effect of the a3 component is too
small to be detectable.

The effect of b2 field errors in the main quadrupoles (MQ) is shown in Figure 4. The
effect is significantly smaller than the expected b2 component of the main dipoles, but as
will be shown later, it can be separated from the effect of the dipoles. All other field errors
of the main quadrupoles are too small to be detected in a realistic situation with BPM noise
and calibration errors.

3.4 Monitor Noise and Calibration Errors

For all cases displayed in Figures 2 to 4, the r.m.s. trajectory changes are rather small,
and can easily be hidden by large BPM noise or large calibration errors. Since the expected
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Figure 2: Change of the trajectory displayed in Figure 1 due to the influence of field errors.
Top : vertical trajectory change due to typical b2 field errors of the main dipoles, with a
mean value of 1.5 units and a r.m.s. over the arc dipoles of 0.7 units. Bottom : horizontal
trajectory change due to a2 field errors of the main dipoles, with a mean value of 0.4 units
and a r.m.s. over the arc dipoles of 1.9 units.
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Figure 3: Effect of b3 field errors of the main dipoles, with a mean value of -9.6 units and a
r.m.s. over the arc dipoles of 1.4 units. Top : horizontal trajectory change for a horizontal
kick of 40 µrad. Top : horizontal trajectory change for a vertical kick of 40 µrad (Figure 1).
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Figure 4: Change of the trajectory displayed in Figure 1 due to the influence of field errors.
Top : vertical trajectory change due to b3 field errors of the main dipoles, with a mean value
of -9.6 units and a r.m.s. over the arc dipoles of 1.4 units. Bottom : vertical trajectory
change due to b2 field errors of the main quadrupoles, with a mean value of -3.9 units and a
r.m.s. over the arc quadrupoles of 10.2 units.
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Field errors f fit − fmod BPM Calibration ‖~V ‖2

in standard units noise errors (%)
Magnet Component f average r.m.s. (µm) BPMs Corr.

MB b2 +0.00± 0.01 0.05± 0.01
MB b3 −0.01± 0.09 0.40± 0.06 25 0 0 ∼ 6800
MQ b2 −0.36± 0.28 1.26± 0.20
MB b2 +0.00± 0.01 0.06± 0.01
MB b3 −0.14± 0.13 0.58± 0.09 50 1 0.1 ∼ 5400
MQ b2 +0.27± 0.24 1.08± 0.17
MB b2 +0.00± 0.01 0.06± 0.01
MB b3 +0.14± 0.10 0.43± 0.07 100 4 0.2 ∼ 5000
MQ b2 +0.01± 0.30 1.34± 0.20

Table 1: Fit of the b2 components of the dipoles and quadrupoles and of the b3 component of
the main dipoles for different input conditions on noise and calibration errors. The model of
the machine used for those simulations included only the b2 and b3 components of the main
dipoles and quadrupoles, generated according to error table 9901. 20 seeds were generated
for each case.

noise for a trajectory measurement is estimated to be ' 50 µm for a single bunch of nominal
intensity with 1011 protons [8], the BPM noise was varied in the simulation between 25 and
200 µm. The BPM calibration errors were varied between 0 and 4%, the later value being
typical for SPS position monitors but may be somewhat pessimistic for the LHC monitors.
For the orbit correctors, the strength errors were varied between 0 and 0.2%.

So far no errors were included to simulate injection oscillations or BPM roll angles.

3.5 Fit Results

Each LOCO fit includes 104 orbit monitor calibration factors (52 per plane) as well as 48 orbit
corrector calibration factors, since a different factor is assumed for the two kick strengths to
account for possible hysteresis effects or calibration table errors. In addition to those 152
basic parameters, between 3 and 4 different field errors were also included in the fits.

In a first step, the machine model was set up to include only b2 and b3 field errors in
the main dipoles and quadrupoles, generated according to error table 9901. The field errors
used in the fit included the average b2 and b3 errors of the main dipoles and the average
b2 error of the main quadrupoles. The effect of the b3 field error of the quadrupoles is too
small and the fit turned out to be insensitive to this parameter. Fit results are given in
Table 1 for different BPM noise conditions and calibration errors. No systematic bias is
observed on the fitted field errors, and the r.m.s. differences between fit and input values
are sufficiently small to yield interesting information. The b3 error of the MB is determined
with a precision of ∼ 0.4−0.5 units for a mean value of ∼ −9.5 units. The influence of noise
and calibration errors are small : no important change is observed in the r.m.s. spreads
between the best and the worst conditions. For a good fit, ‖~V ‖2 should be ≤ 4900 − 5000,
a value that is reached for noise of 100 µm. With small BPM noise, the random field errors
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contribute significantly to the difference between fit model (which does not include random

components) and measurement and increase the achievable minimum value of ‖~V ‖2.
In a second steps all field errors (normal and skew) of orders 2 to 5 were included in the

machine model. The average a2 field error of the main dipoles was added as fit parameter.
Results are given in Table 2. The correlations between model input and fit results are shown
in Figures 5 and 6 for the case where the BPM noise is 50 µm and the BPM calibration
errors are 1%. The average fit value for the a2 and b2 components of the main dipole give
good results. As expected, the additional random components compared to the situation
with only b2 and b3 errors contribute to the measurement noise and degrade the fit quality
for small noise. The error on the b3 component of the dipoles is degraded by almost a factor
two when the additional terms are included, compare Tables 1 and 2. The quality of the
quadrupole b2 component is also degrading, in particular a systematic shift of the fit result
seems to appear. Furthermore, there is now a rather clear increase in the spread between
input and fit values for the quadrupole b2 field error as the noise is increased.

Field errors f fit − fmod BPM Calibration ‖~V ‖2

in standard units noise errors (%)
Magnet Component f average r.m.s. (µm) BPMs Corr.

MB b2 +0.00± 0.01 0.06± 0.01
MB a2 −0.04± 0.03 0.12± 0.02 25 0 0 ∼ 14600
MB b3 +0.01± 0.21 0.96± 0.15
MQ b2 −0.44± 0.26 1.17± 0.19
MB b2 +0.00± 0.01 0.05± 0.01
MB a2 +0.00± 0.03 0.11± 0.02 50 1 0.1 ∼ 7200
MB b3 +0.45± 0.20 0.89± 0.15
MQ b2 −0.38± 0.26 1.21± 0.19
MB b2 +0.00± 0.01 0.06± 0.01
MB a2 −0.02± 0.02 0.08± 0.01 100 4 0.2 ∼ 5500
MB b3 +0.01± 0.22 1.00± 0.15
MQ b2 −0.68± 0.38 1.72± 0.27
MB b2 +0.00± 0.01 0.06± 0.01
MB a2 +0.03± 0.02 0.10± 0.01 200 4 0.2 ∼ 5000
MB b3 +0.10± 0.19 1.06± 0.14
MQ b2 −0.79± 0.34 1.90± 0.25

Table 2: Fit of the b2, a2 and b3 components of the dipoles and of the b2 components of
quadrupoles for different input conditions on noise and calibration errors. The model of the
machine used for those simulations included all normal and skew field errors of order two
(b2, a2) to 5 (b5, a5) of the main dipoles and quadrupoles, generated according to error table
9901. 20 seeds were generated for the three first cases, 30 for the last case (noise of 200 µm).
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Figure 5: Correlation between the fit result and the simulation input for the average b2 (top)
and a2 (bottom) field error of the main dipoles.
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Figure 6: Correlation between the fit result and the simulation input for the average b3 field
error of the main dipoles (top) and for the average b2 field error of the main quadrupoles
(bottom).
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Figure 7: Dependence of the error on the reconstructed BPM calibration on the r.m.s. BPM
noise for a machine model with field errors of orders 2 to 5 (•) and for a machine without
any field error (N).

3.6 Monitor and Corrector Calibration

It is also interesting to analyze the reconstructed monitor and orbit corrector calibrations and
compare them to the initial input values. The error on the reconstructed BPM calibration is
shown in Figure 7 as a function of the monitor noise. For a machine model without any field
errors, where the only measurement errors are due to the noise and where no field errors
need to be adjusted, the error on the calibration factor scales as expected directly with
the monitor noise. For a machine model including systematic and random field errors, the
BPM calibrations are biased by the random components of the field errors whose effects are
partially absorbed into the calibration factors by the fit. For a machine model including field
errors of orders 2 to 5, the additional r.m.s. BPM calibration bias corresponds to ∼ 0.65%. A
similar observation can be made for the orbit corrector calibration errors shown in Figure 8.
In that case the calibration bias due to the random components is ∼ 0.6%.

4 Conclusion

The present study of trajectory response study for one LHC arc indicates that for noise
conditions of up 200 µm r.m.s., it is possible to determine the average a2, btwo and b3 field
errors of the main dipoles and the average b2 field error of the main quadrupoles and perform
a check of the test bench measurements of the magnets.

In this study the influence of injection errors has not been considered because the LOCO
program is presently not able to handle such an additional complication. The conclusions
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Figure 8: Dependence of the error on the reconstructed orbit corrector calibration on the
r.m.s. BPM noise for a machine model with field errors of orders 2 to 5 (•) and for a machine
without any field error (N).

apply therefore only to a situation including injection errors of those errors do not exceed
∼ 200µm, i.e. ≈ 0.2σ. For significantly larger injection errors, it is necessary to either
average a large number of injection to average out such errors or to include an injection
oscillation into the fit for each trajectory response. The later option requires a significant
modification of the LOCO program.

5 Acknowledgements

The author would like to thank J. Safranek for providing the LOCO code and its documen-
tation.

References

[1] J. Safranek, Nucl. Instr. Meth. A388 (1997) 27.

[2] J. Wenninger, minutes of the SPS Studies Working Group, 11th June 2002.
J. Wenninger, minutes of the SL Operations Comittee meeting, 4th July 2002.

[3] H. Grote and F. Iselin, The MAD Program, CERN/SL/90-13 Rev. 5, 1996.

[4] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes (Cambridge
University Press, Cambridge, 1987), 1st ed.

16



[5] B. Autin and Y. Marti, CERN report ISR MA/73-17, 1973.

[6] Engineering Specification LHC-M-ES-001.00 rev 1.1
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