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Abstract

The determination of the centre-of-mass energies for all LEP 2 running is presented.
Accurate knowledge of these energies is of primary importance to set the absolute energy
scale for the measurement of the W boson mass. The beam energy between 80 and 104 GeV
is derived from continuous measurements of the magnetic bending field by 16 NMR probes
situated in a number of the LEP dipoles. The relationship between the fields measured by
the probes and the beam energy is defined in the NMR model, which is calibrated against
precise measurements of the average beam energy between 41 and 61 GeV made using the
resonant depolarisation technique. The validity of the NMR model is verified by three in-
dependent methods: the flux-loop, which is sensitive to the bending field of all the dipoles
of LEP; the spectrometer, which determines the energy through measurements of the de-
flection of the beam in a magnet of known integrated field; and an analysis of the variation
of the synchrotron tune with the total RF voltage. To obtain the centre-of-mass energies,
corrections are then applied to account for sources of bending field external to the dipoles,
and variations in the local beam energy at each interaction point. The relative error on
the centre-of-mass energy determination for the majority of LEP 2 running is1.2 × 10−4,
which is sufficiently precise so as not to introduce a dominant uncertainty on the W mass
measurement.

Accepted by Eur. Phys. J. C.



1 Introduction

The operation of the large electron-positron (LEP) collider in the years 1996 to 2000 (LEP 2)
saw the delivery of almost 700pb−1 of integrated luminosity to each experiment ate+e− col-
lision energies above the W-pair production threshold. A primary physics motivation for the
LEP 2 programme was the precision measurement of the W boson mass,MW ≈ 80.4 GeV/c2.
The centre-of-mass energy,ECM, establishes the absolute energy scale for this measurement,
and any uncertainty in this quantity leads to an uncertainty of∆MW/MW ≈ ∆ECM/ECM. The
statistical precision on the full LEP 2 data set is around 30 MeV [1]. To avoid a significant
contribution to the total error, this sets a target of∆ECM/ECM = 1 − 2 × 10−4. This paper
reports on the determination of the centre-of-mass energies for all LEP 2 operation. The results
supersede those in an earlier publication concerning the 1996 and 1997 LEP runs [2].

In the following section the main concepts which will be used in the subsequent analysis are
introduced, together with a brief year-by-year description of LEP 2 operation. The method of
the energy determination is then presented.

The starting point of the energy determination is a set of precise calibrations of the mean
beam energy around the ring,Eb, performed with theresonant depolarisation (RDP) technique
at energies of41 < Eb < 61 GeV. The NMR model relates these calibrations to field mea-
surements made by NMR probes in selected dipoles. The model is then used to set the absolute
energy scale for operation in the interval81 < Eb < 104 GeV (thephysics regime). RDP and
the calibration of the NMR model are explained in section 3. Corrections are applied to this
energy estimate to account for variations with time in the dipole strength during data-taking,
and additional sources of bending field, such as those arising from non-central orbits in the
quadrupoles. These corrections are described in section 4. The NMR estimate together with
these corrections forms the fullEb model.

In calculating the centre-of-mass energy at each experimental interaction point it is neces-
sary to know the local beam energy, which differs significantly fromEb around the ring due to
losses from synchrotron radiation and the boosts provided by the RF system. Other potential
corrections toECM come from the correlated effects of dispersion and collision offsets, and any
difference in energy between the electron and positron beams. These issues are discussed in
section 5.

The most important uncertainty in the energy determination is that associated with the NMR
model. This error is assigned from the results of three complementary approaches, which in
different manners attempt to quantify the agreement between the model and the true energy in
the physics regime.

1. Theflux-loop was a sequence of copper loops which were embedded in the dipole cores
and connected in series and which sensed the change of flux as the magnets were ramped.
The number of NMR-equipped dipoles used in the model was limited, but compari-
son with the flux-loop data allows the representability of this sampling to be assessed.
Flux-loop data were accumulated in dedicated measurements throughout LEP 2 opera-
tion which can be used to constrain the model, as is explained in section 6.

2. Thespectrometer was a device installed and commissioned in 1999 and used throughout
the 2000 run. It consisted of a steel dipole with precisely known integrated field, and
triplets ofbeam-position monitors (BPMs) on either side which enabled the beam deflec-
tion to be measured, and thus the energy to be determined. The spectrometer apparatus
and calibration is outlined in section 7, and the data analysis is presented in section 8.
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3. In a machine such as LEP thesynchrotron tune, Qs, depends on the beam energy, the
energy loss per turn, and the total RF voltage,VRF. Since the energy loss itself depends
on the beam energy, an analysis of the variation ofQs with VRF can be used to infer
Eb. Experiments were conducted in 1998, 1999 and 2000 to exploit this method. A full
description is given in section 9.

The results of the three approaches can be assessed for compatibility. If consistent, they may
be combined to set both a correction and an associated uncertainty for the NMR model. Such
an analysis is presented in section 10. The resulting uncertainty, together with the uncertainties
from other sources, is used in section 11 to assign the total error on the collision energies.

The spread in the collision energies is relevant in the analysis of the W boson width. The
understanding of the energy spread is described in section 12. The conclusions of the energy
analysis can be found in section 13.

2 The LEP Machine and the LEP 2 Programme

2.1 LEP Beam Energy and Synchroton Energy Loss

The energy,Eb, of a beam of ultra-relativistic electrons or positrons in a closed orbit is directly
proportional to the bending field,B, integrated around the beam trajectory,s:

Eb =
ec

2π

∮
B ds. (1)

For LEP 98% of the nominal bending field was provided by 3280 concrete-reinforced dipole
magnets, of approximate length 5.8 m and field of 1070 G atEb = 100 GeV. The remaining 2%
was dominated by steel-cored dipoles in the injection region, with a small contribution coming
from the special weak dipoles designed to match the arcs to the straight sections. There were
other possible sources of effective dipole field, such as the quadrupole magnets on the occasions
when the mean beam trajectory was not centred. Expression 1 is assumed in constructing the
NMR model and is fundamental to the LEP 2 energy calibration.

As the beams circulate they lose energy through synchrotron radiation. The energy loss per
turn,U0, is given by:

U0 =
Cγ (ec)2

2π

∮
E2

bB
2ds, (2)

where the constantCγ ≡ e2/3ε0(mec
2)3 = 8.86 × 10−5 (GeV)−3. This relation, together with

expression 1 gives:

U0 = Cγ
E4

b

ρ
. (3)

Hereρ is theeffective bending radius, which in the case of LEP was approximately 3026 m.
Expression 3 gives an energy loss per turn of 2.9 GeV at beam energies of 100 GeV.
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Year 1996 1997 1998 1999 2000

Enom
CM [GeV] 161 172 183 189 192 196 200 202 205 207∫
L dt [pb−1] 10 10 54 158 26 76 83 41 83 140

Physics optics 90/60 90/60 102/90 102/90 102/90

(108/90) (102/90)

Polarisation optics 90/60 60/60 60/60 60/60 101/45

(101/45)

Table 1: Summary of the LEP 2 running parameters and performance. Shown for each year are
the nominal collision energies; the integrated luminosities collected by a typical experiment;
the choice of optics for the majority of the physics running (‘physics optics’) and the preferred
optics used for RDP calibration (‘polarisation optics’). (Alternative choices of optics used dur-
ing the run are given in parentheses.) The values given for the optics signify the betatron phase
advance in degrees between the focusing quadrupoles in the horizontal/vertical planes.

The energy loss from synchrotron radiation is replenished by the RF system. In the LEP 2
era this consisted of stations of super-conducting cavities situated on either side of the four
experimental interaction points. The installation of new cavities, and increases to the field
gradient of the existing klystrons, enabled the voltage of the RF system to be augmented each
year of LEP 2 operation. Understanding the variation in beam energy around the ring from
synchrotron radiation losses and RF boosts is an important ingredient in the energy model.
Furthermore, the measurement of quantities sensitive to the energy loss, such as the synchrotron
tune, can be used to determine the beam energy itself.

2.2 LEP 2 Datasets and Operation

The LEP 2 programme began in 1996 when the collision energy of the beams was first ramped
to theW+W− production threshold of 161 GeV, and approximately10 pb−1 of integrated lu-
minosity was collected by each experiment. Later in that year LEP was run at 172 GeV, and a
dataset of similar size was accumulated. In each of the four subsequent years of operation the
collision energy was raised to successively higher values, such that almost half the integrated
luminosity was delivered at nominal collision energies of 200 GeV and above. The motivation
for this policy was to improve the sensitivity in the search for the Higgs boson and other new
particles. The step-by-step nature of the energy increase was dictated by the evolving capabil-
ities of the RF system. The nominal energy points of operation,Enom

CM , are listed in table 1,
together with the approximate integrated luminosities delivered to each experiment.

During normal operation the machine would be filled with four electron and four positron
bunches atEb ≈ 22 GeV, and the beams would then be ramped to physics energy, at which
point they would be steered into collision and experimental data-taking began. Thefill would
last until the beam currents fell below a useful level, or an RF cavity trip precipitated the loss
of the beam. The mean fill lengths ranged from 5 hours in 1996 to 2 hours in 1999. Af-
ter de-gaussing the magnets the cycle would be repeated. Following the experience gained at
LEP 1 [3], bending modulations were performed in the 1997–1999 runs prior to colliding the
beams, in which the dipole current was modulated with a sequence of very small square pulses.
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Figure 1: Distributions of collected luminosity for a single LEP experiment in 2000. (a) shows
the integrated luminosity in bins of ECM. (b) shows the variation of ECM against day of year;
each entry corresponds to the mean energy for a data file of maximum length ∼ 30 minutes.
The values of ECM have been calculated using the full energy model.

The purpose of this exercise was to condition the magnets and suppress the effects of parasitic
currents.

In 2000, the operation was modified in order to optimise still further the high-energy reach
of LEP [4]. Fills were started at a beam energy safely within the capabilities of the RF system.
When the beam currents had decayed significantly, typically after an hour, the dipoles were
ramped and luminosity was delivered at a higher energy. This procedure was repeated until the
energy was at the limit of the RF, and data taken until the beam was lost through a klystron
trip. These miniramps lasted less than a minute, and varied in step size with a mean value of
600 MeV. Hardware signals were used to flag the start and end of miniramps to the experiments,
which continued to take data throughout, and this information was recorded with the logged
triggers. The starting energy of fills, and the precise strategy of miniramping varied throughout
the year, depending on the status of the RF system. The luminosity in 2000 was therefore
delivered through a near-continuum of energies. The sub-fills on either side of the miniramps
can be seen in the ‘fi ne structure’ of figure 1 (a) and 1 (b), which display the distribution of
luminosity both with ECM and time for a single experiment. The coarser bands in the plots arise
through the choice of starting energy for the fill, a decision dependent on the status of the RF
system. The two Enom

CM points listed in table 1 refer to the integrated totals delivered below and
above an arbitrary division value of 205.5 GeV. The lower of these two bins is dominated by
data accumulated in the earlier part of the run.

Another aspect of operation which was unique to 2000, also deployed to optimise the col-
lision energy within the restrictions of the available RF voltage, was the coherent powering
of corrector magnets to apply a so-called bending-field spreading (BFS) boost. The BFS is
discussed in section 4.3.

In addition to the high-energy running summarised in table 1, each year a number of fills
were performed at the Z resonance. This was to provide calibration data for the experiments.
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During 1997, some data were also collected at nominal centre-of-mass energies of 130-136 GeV,
to investigate effects seen during operation at similar energies in 1995. Finally, several fills were
devoted to energy-calibration activities, most notably RDP, spectrometer andQs measurements.
Most of these energy-calibration experiments were conducted with single beams, and many of
them spanned a variety of energy points.

Included in the information of table 1 are the machine optics which were used for physics
operation (‘physics optics’ ) and for RDP measurements (‘polarisation optics’ ). The values sig-
nify the betatron phase advance in degrees between the focusing quadrupoles of the LEP arcs
in the horizontal/vertical planes. The choice of optics evolved throughout the programme in
order to optimise the luminosity at each energy point. Certain optics enhanced the build-up of
polarisation, and thus were favoured for RDP measurements. As is explained in section 4, the
optics influences Eb in several ways, which must be accounted for in the energy model.

3 RDP, the NMR Model and the Energy Model

The LEP 2 energy scale is set by the NMR model. Between beam energies of 41 and 61 GeV
precise measurements of Eb are provided by resonant depolarisation (RDP). Also available are
local measurements of the bending field, made by NMR probes in selected dipoles. Following
expression 1, and taking the probes to be representative of the total bending field, the NMR
model is calibrated through a linear fit between the RDP measurements and the NMR readings at
low energy. Applying this calibrated model at high-energy fixes ENMR

b , the dipole contribution
to the beam energy in physics operation. Onto ENMR

b must be added corrections coming from
sources of bending field external to the dipoles, to giveEMOD

b , the energy model (or Eb model).
Possible sources of error in the NMR model arise from the limited sampling of the total

bending field provided by the probes, and the consequences of any non-linearity in the relation-
ship between the field and Eb, when extrapolated up to high energy.

3.1 RDP Measurements

The best determination of the beam energy at a particular time is by means of RDP. The
beam can build up a non-negligible transverse polarisation through the Sokolov-Ternov mecha-
nism [5]. The degree of polarisation can be measured by the angular distribution of Compton-
scattered polarised laser light. By exciting the beam with a transverse oscillating magnetic field,
this polarisation can be destroyed when the excitation frequency matches the spin precession
frequency. Determining the RDP frequency allows a precise determination of Eb through:

Eb = ERDP
b ≡ νs . me c

2

(ge − 2)/2
, (4)

where νs is the ‘spin-tune’ , that is the number of electron-spin precessions per turn, me is
the electron mass and (ge − 2)/2 is the magnetic-moment anomaly of the electron 1. The
beam energy measured by RDP is the average around the ring and over all particles. Possible
corrections to expression 4 coming from effects such as non-vertical magnetic fields have been

1In fact, as is explained in [6], RDP is sensitive only to the non-integer part of the spin-tune. The integer part is
determined from the knowledge of the bending field, which, at the Z resonance, need only be known with a relative
accuracy of 10−2 for this purpose.
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investigated and found to be small [6]. The intrinsic precision of RDP at the Z resonance is
estimated to be 200 keV.

The polarisation level at LEP is limited by the strength of the synchrotron side band reso-
nances, which bring about unwanted depolarisation. The strength of these depolarising reso-
nances decreases linearly with the order of the side band, and increases with the fourth power
of the beam energy. Because the beam has an energy spread which depends on E2

b (see sec-
tion 12) there is a corresponding spread in the precession frequencies of the particles in each
bunch. At low energies the polarisation depends mainly on the linear synchrotron resonances
(νs = k±Qs, k integer). At beam energies above 45 GeV, the influence of the higher order syn-
chrotron resonances (νs = k ± ksQs, ks ≥ 1) grows in importance. The interval between these
resonances becomes small compared with the spread in precession frequencies, and hence the
polarisation level drops rapidly with Eb. Consequently, at LEP 2 physics energies RDP cannot
be performed. A detailed discussion of polarisation at LEP 2 can be found in [7].

RDP measurements made at low energies are used to calibrate the NMR model, which is
then applied in the physics regime. The systematic uncertainties in this procedure can be min-
imised by making the span of RDP measurements as wide as possible, in particular at high
energy. Therefore during the LEP 2 programme techniques were developed to reduce the ma-
chine imperfections and enhance the polarisation levels during RDP calibration. These included
the use of ‘harmonic spin matching’ , in which closed orbit bumps are introduced to compensate
for the depolarising effects of integer resonances [8]; the ‘k-modulation’ studies to measure the
offsets between beam pick-ups and quadrupole centres [9]; the improved use of magnet-position
surveys; and the development of dedicated polarisation optics [10]. The maximum energy at
which sufficient polarisation was obtained for a reliable calibration measurement was 61 GeV.
The time required for a complete measurement at each energy point was several hours.

The full list of LEP 2 RDP measurements is shown in table 2, indicating the fill number,
date, nominal values of Eb calibrated and optics used. In total 86 energy points, distributed
through 37 fills, were calibrated. The lowest energy measured was 41 GeV, a value dictated
by the range of sensitivity of the NMR probes. Care was taken to perform a subset of the
measurements with physics optics as well, to allow for a cross-check against optics dependent
effects not foreseen in the the energy model.

3.2 The NMR Model and the Energy Model

The NMR probes measured the local magnetic field with a relative precision of 10−6. Through-
out LEP 2 operation a total of 16 probes were read out during physics and RDP operation.
Time-integrated readings were logged every 5 minutes. During the 2000 run additional records
were logged in response to rapid changes in field during miniramps. In the analysis the probes
are designated by their octant location. Each LEP octant had at least one probe, while octants 1
and 5 each had strings of five probes (1a–e; 5a–e). Probes 1c and 1d were situated in the same
dipole. Other dipoles in the injection region, and the spectrometer, were also instrumented with
probes for limited periods of the programme, but these are not included in the NMR model.

The NMR probes were located above the vacuum chamber and underneath a steel field plate,
installed to improve the uniformity of the local field. Radiation damage from synchrotron light
led to a reduction in the probe locking efficiency, particularly at low energy. In response to
this problem the probes were replaced, typically two to three times a year. Precision mounts
first used in 1997 ensured that the replacement probes were installed to within 0.5 mm of their
nominal positions.
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Fill Date 41 GeV 45 GeV 50 GeV 55 GeV 61 GeV Optics

3599 19 Aug ’96 • 90/60

3702 31 Oct ’96 • 90/60

3719 3 Nov ’96 • • 90/60

4000 17 Aug ’97 • 90/60

4121 6 Sept ’97 • • 60/60

4237 30 Sept ’97 • • 60/60

4242 2 Oct ’97 • • • • 60/60

4274 10 Oct ’97 • 90/60

4279 11 Oct ’97 • • • • 60/60

4372 29 Oct ’97 • • 60/60

4666 14 June ’98 • • • 60/60

4669 18 June ’98 • 102/90

4843 15 July ’98 • • 60/60

5137 6 Sept ’98 • 60/60

5141 7 Sept ’98 • • • 60/60

5214 20 Sept ’98 • • • • • 60/60

5232 29 Sept ’98 • 102/90

5337 18 Oct ’98 • • • • • 60/60

5670 7 June ’99 • • 60/60

5799 25 June ’99 • • • 60/60

5969 22 July ’99 • 60/60

5971 22 July ’99 • • 60/60

6087 8 Aug ’99 • 60/60

6302 9 Sept ’99 • • • • 60/60

6371 20 Sept ’99 • • • • 60/60

6397 25 Sept ’99 • • 101/45

6404 26 Sept ’99 • • • • 60/60

6432 29 Sept ’99 • • 101/45

6509 9 Oct ’99 • • • 101/45

6627 27 Oct ’99 • 102/90

7129 11 May ’00 • • • 101/45

7251 25 May ’00 • • • 101/45

7519 21 June ’00 • • 101/45

7929 26 July ’00 • 101/45

8368 4 Sept ’00 • • • 101/45

8446 11 Sept ’00 • 101/45

8556 25 Sept ’00 • • • 101/45

Table 2: Successful RDP measurements at LEP 2. Measured energy points are marked •.
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In the NMR model the magnetic fields BNMR i measured by each NMR i = 1a, .., 8, after
ramping to the excitation current of interest, are converted into an equivalent raw beam energy
ENMR i

b . The relation is assumed to be linear, of the form

ENMR i
b = ai + biBNMR i, (5)

with ENMR
b being used to signify the average over all ENMR i

b .
Because the NMR probes are only sensitive to the dipole fields, it is necessary to account for

the other sources of bending field in order to have the best possible model of the beam energy.
Therefore ENMR i

b is corrected to

EMOD i
b = ENMR i

b +
∑

∆Eb, (6)

where the sum runs over all the additional components in the energy model detailed in section 4.
These corrections are common to all NMRs and include energy changes between the end of
ramp and the time of interest. In the calibration procedure the two parameters ai and bi for each
probe are determined by a fit to the energies measured by RDP. Thereafter, all available values
of EMOD i

b are averaged together to give EMOD
b , which is taken as the energy model’s estimate

of Eb. At LEP 2 energies the error associated with EMOD
b arising from the uncertainty in the

RDP measurements themselves is less than 0.5 MeV.

3.3 NMR Residuals, High-Energy Scatter and Stability with Time

The NMR model has been calibrated against the RDP data of each year separately, and the
results of these fits are used to define the energy model for that year. As the calibration coeffi-
cients are observed to be very stable for 1997 onwards, a calibration has also been made against
the complete 1997–2000 dataset. (This global fit can not be extended to 1996 because of dif-
ferences in the exact probe locations for this year.) The mean (and RMS) coefficients averaged
over the 16 probes are found to be 〈a〉 = 91.17(0.24) MeV/Gauss and 〈b〉 = 22(61) MeV. No
significant difference is found between the fit results for different optics.

Figure 2 shows the residuals of the separate fits to the RDP data, averaged over the probes,
for the main datasets and those of the global fit. The error bars are the statistical uncertainties on
the mean of all the contributing measurements. There is a small, but characteristic, non-linearity
over the sampled energy range. All the ingredients in theEb model described in section 4 which
enter into figure 2 are well understood and linear with energy; hence the observed non-linearity
can be attributed to the NMR model alone.

The residuals of the individual NMRs entering in figure 2 agree to within a few MeV. When
the model is applied at high energy, however, the individual non-linearities of each magnet,
and the lever-arm over which the calibration is extrapolated, lead to a significant scatter in
the prediction of ENMR

b . Figure 3 shows the relative differences between ENMR i
b and ENMR

b

evaluated during high-energy physics operation, averaged over all 1997–2000 data. The error
bars are half the difference between the maximum and minimum values in these years. There is
no strong evidence of systematic structure in this distribution, although the differences for those
probes in octant 1 are predominantly positive in sign, and those in octant 5 are predominantly
negative. The RMS of the individual probe predictions is 43×10−5. If the measurements of the
16 probes are representative of the 3280 dipoles in LEP, then the expected precision of the dipole
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Figure 2: Residuals of the fitted energy model to the RDP data in 1997-2000. Each point
is the mean over the available measurements at that energy, with the error bar the statistical
uncertainty on this mean. The horizontal positions of the points have been slightly adjusted to
aid clarity.

Dataset

Fit ’97 ’98 ’99 ’00

’97 / 4.1 1.5 0.9

’98 -3.6 / -2.5 -0.3

’99 -1.8 1.9 / 2.1

’00 -3.6 -0.1 -1.7 /

’97-’00 -2.0 1.8 -0.6 1.8

Table 3: Shift in ENMR
b (MeV) observed in physics operation when the data are reprocessed

with NMR calibration coefficients determined by a fit to the RDP data of another year.

part of the model at Eb = 100 GeV is 11 MeV. The purpose of the flux-loop, spectrometer and
Qs measurements presented in the following sections is to test this assumption and to constrain
further any offset between the model prediction and the true energy.

Both figures 2 and 3 illustrate the stability of the NMR calibration with time. This can be
seen in a more quantitative fashion by using the calibration coefficients of one year to evaluate
ENMR

b during physics operation in another year. The luminosity-weighted mean shifts in results
are presented in table 3, and are always 4 MeV or less. Larger shifts of around 30 MeV are seen
when a later year’s calibration coefficients are applied to the 1996 data, a difference attributable
to the change in probe locations after the 1996 run.
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Figure 3: Relative differences between the individual probe predictions of the dipole energy
and that of the average, evaluated at physics energy and averaged over 1997–2000. The error
bars are half the difference between the maximum and minimum values in these years.

4 Other Components of the Eb Model

The NMR fit gives the value of the energy from the dipole magnets at start-of-fill. The complete
Eb model adds to this contributions coming from variations of the dipole magnet strength during
the fill, as well as additional sources of bending field arising from quadrupole effects, horizontal
correctors, and uncompensated currents flowing in the magnet power bars. These additional
model components, represented by

∑
∆Eb in expression 6, are discussed in this section. The

relative importance of the model components during physics running can be assessed from
table 4, which shows the luminosity-weighted contribution of each term to EMOD

b at each high-
energy point of the LEP 2 programme.

4.1 Quadrupole Effects

In a very high-energy synchrotron, such as LEP, the orbit length is fixed by the RF frequency,
fRF. The central RF frequency, fRF

c corresponds to that orbit where the beam passes on average
through the centre of the quadrupoles. When the RF frequency fRF does not coincide with fRF

c ,
the beam senses on average a dipole field in the quadrupoles, which causes a change in the beam
energy, ∆Eb, of:

∆Eb

Eb
= − 1

αc

fRF − fRF
c

fRF
, (7)

where αc is the momentum compaction factor, the optics dependent values of which are listed
in table 5, as calculated by the simulation program MAD [26]. The nominal value of fRF

c is

10



Year ’96 ’97 ’98 ’99 ’00

Enom
CM [GeV] 161 172 183 189 192 196 200 202 205 207

fRF
c -13.8 -14.2 -20.2 -27.5 1.2 -27.8 -40.0 -24.4 -32.3 -40.2

fRF 0.0 -3.0 -152.4 -187.0 -222.2 -229.7 -194.9 -129.8 -85.9 -29.6

NMR rise 3.6 7.0 1.7 0.8 0.7 -0.1 -0.7 -0.7 1.5 2.2

Tides 1.1 0.8 1.2 1.7 1.9 2.2 1.4 1.8 2.0 1.8

Hcor / BFS -2.8 -3.0 -5.6 -7.8 -1.1 -1.6 -0.4 1.1 357.6 430.0

QFQD -2.6 -2.4 -2.8 -1.3 -1.3 -1.4 -1.4 -1.4 -1.4 -1.4

Table 4: The luminosity-weighted corrections to EMOD
b in MeV from each component in the

energy model at each nominal energy point.

Optics αc [ ×10−4 ]

90/60 1.86

Physics 108/90 1.43

102/90 1.56

60/60 (1997-98) 3.87

Polarisation 60/60 (1999) 3.77

101/45 1.50

Table 5: Calculated values of the momentum compaction factor, αc, for the physics and polari-
sation optics of the LEP 2 programme. The estimated relative uncertainties are 1%.

352,254,170 Hz. The consequences of variations in both fRF and fRF
c must be corrected for in

the energy model.

4.1.1 Central Frequency and Machine Circumference: ∆Eb (fRF
c )

The central frequency was measured only on a few occasions during a year’s running and
required non-colliding beams [11]. In between these measurements, fRF

c can be interpolated
through xarc, the average horizontal beam position in the LEP arcs as measured by the beam-
position monitors (BPMs) at a defined RF frequency [12]. These measurements are shown in
figure 4 for 1997-2000, where the xarc data have been normalised to the actual fRF

c measure-
ments. The central frequency can be seen to change by 20–30 Hz, and evolves in a similar
fashion over the course of each year. The evolution indicates a change in the machine cir-
cumference, one which is believed to be driven by a seasonal variation in the pressure of the
water-table and the level of Lac Léman.

The fRF
c and xarc measurements together allow the energy to be corrected fill by fill. The

average values of this correction are listed in table 4 and are found to be similar year to year.
The variation seen within 1999 comes about because the running at each energy point was
concentrated at different periods of the year, rather than uniformly distributed.

The uncertainty on this correction is set by studying the agreement between the direct fRF
c

measurements and xarc. In general these are consistent, although there are occasional discrep-
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Figure 4: Evolution of the central frequency as a function of time for the four main datasets of
the LEP 2 programme. Shown are both the actual fRF

c measurements, and the values extracted
from xarc, after correction for tides. Note that the vertical scale shows a variation in the last four
digits of the LEP RF frequency, which is nominally 352 254 170 Hz.
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ancies, such as for some of the e+ data in 1998. Globally the agreement is found to be good
to ±2 Hz. Any bias in fRF

c will apply to both the low-energy calibration data and the high-
energy running. As the correction scales with energy, the effect of a bias will be absorbed in
the calibration coefficients and lead to no net error at high energy. This argument is only valid,
however, when the optics, and therefore αc, is the same for calibration and physics operation.
This was the case in 1996, and approximately so in 2000, but not in the other years, where the
uncertainty in fRF

c induces a residual 3 × 10−5 error on EMOD
b .

The LEP circumference was also distorted by the gravitational mechanism of earth tides,
as discussed in section 4.2.2. These effects have been subtracted in the fRF

c analysis. The fRF
c

and xarc measurements used in this analysis have also been corrected for residual biases from
horizontal corrector effects [11], discussed in section 4.3.

4.1.2 RF Frequency Shifts: ∆Eb (fRF)

For 1997 and subsequent years the RF frequency was routinely increased by ∼ 100 Hz from
the nominal value in order to change the horizontal damping partition number. This was done
to squeeze the beam more in the horizontal plane, which benefited both the specific luminosity
and the machine background at the experiments. A side-effect of this strategy was that the beam
energy was reduced, following equation 7. Since the 2000 run placed a premium on reaching
the highest possible energies, a smaller offset was chosen in this year.

On the occasions when RF cavities tripped, the RF frequency was temporarily decreased in
order to keep the beam lifetime high, and afterwards was raised to its previous value when full
RF voltage was restored. This led to abrupt energy steps during a fill. Therefore all fRF manip-
ulations were routinely logged, enabling the energy values at the experiments to be updated at
each change.

Associated with the quadrupole-related energy corrections is an error arising from the 1%
uncertainty in the momentum compaction factor, which is conservatively assumed to be in com-
mon between all optics.

4.2 Continuous Energy Change During a Fill

During the timescale of a fill the beam energy in general fluctuated by several MeV, both because
of variations in the dipole field and because of earth tides. These effects are well understood
from LEP 1 [3].

4.2.1 Change in Dipole Field: ∆Eb (NMR rise)

The strength of the dipole magnets varied during the course of a fill, both because of tempera-
ture effects and because of parasitic currents which flowed on the beampipe. This evolution is
included in the model by calculating the field variation since start-of-fill averaged over all avail-
able NMR probes, expressed as an energy change. Measurements of the parasitic current show
different behaviour for octants 1,7 & 8 compared with octants 2 – 6. Therefore the average field
change is calculated with a weight for each NMR to reflect its octant location.

The size of the luminosity-weighted dipole change is less than 2 MeV for data-taking in
1997–1999. This is lower than in 1996 and 2000 because of the routine use of bending modu-
lations. The difference in the size of the effect between 1996 and 2000 is directly attributable
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Figure 5: Comparison between the tide and NMR rise components of the energy model and
RDP measurements for fill 6432. The tide contribution is also shown separately.

to the short length of the sub-fills in the latter year.

4.2.2 Earth Tides: ∆Eb (Tides)

Tidal effects, due to the combined gravitational attraction of the Sun and Moon, can cause
relative distortions of up to 10−8 [13] in the circumference of the LEP tunnel. During opera-
tion these distortions changed the positions of the quadrupoles with respect to the beam, and
resulted in energy variations through the same mechanism as is described in section 4.1. The
amplitude of the ring distortions has been calibrated against the LEP BPM system to a precision
of 5% [14].

Occasions when repeated RDP measurements were made over a period of several hours can
be used to test the modelling of the energy change during a fill. Figure 5 shows results from
50 GeV operation in fill 6432 during 1999. Shown is the change in Eb as measured by RDP and
as predicted by the model, plotted against elapsed time since the start of the experiment. The
energy change of the model receives contributions from the dipole change seen in the NMRs,
which rises by 4 MeV, and that from the earth tide, which first rises by 2 MeV and then falls to
zero. The model has been normalised to the RDP over the first 30 minutes of the experiment;
throughout the following 6 hours excellent agreement is seen.

From such experiments the uncertainty on EMOD
b from the combined modelling of tide ef-

fects and dipole field change is known to be very small. A correlated error of 0.5 MeV is
assigned for all years, independent of energy.
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4.3 Horizontal Corrector Effects

Horizontal correctors are small, independently-powered dipole magnets which were used to
correct local deviations in the orbit. The global effect of these corrections had the potential to
influence Eb and thus must be accounted for in the energy model.

In the last year of LEP operation the horizontal correctors were intentionally powered in a
coherent manner in order to increase the fraction of bending field outside the main dipoles; this
bending-field spreading (BFS) significantly increased the beam energy attainable at a given RF
voltage and is described by an important model component unique to the 2000 run.

4.3.1 Horizontal Correctors Prior to 2000: ∆Eb (Hcor)

Each horizontal corrector, i, provides an angular kick, θi
x, in a region where the local horizontal

dispersion is Di
x. Hence, summing over all magnets, there is a lengthening ∆L in the orbit

where

∆L =
∑

i

Di
x θ

i
x. (8)

This orbit lengthening leads to an energy change of

∆Eb

Eb
= − ∆L

αc C
, (9)

where C is the LEP circumference. The actual value of ∆L is plotted against fill number
in figure 6 and can be seen to vary significantly with time. Different corrector settings were
required for each optics, as was day-by-day adjustment by the operators in order to optimise
the machine performance. A fill-by-fill mean value of ∆L is used in calculating EMOD

b during
physics running. The largest correction is -8 MeV for the 1998 run. When analysing the RDP
calibration data, individual corrector manipulations within the fill are considered.

An alternative way to picture the effect of the correctors on Eb is to assume that the fields
responsible for the kicks sum to augment the total bending field of the ring. This model is
naive, as some of the corrections compensate the orbit distortions introduced by misaligned
quadrupoles. The results of dedicated measurements [3,15] favour the orbit lengthening model,
but find both descriptions to be compatible with the data.

The difference between the effects of the two models is 30 %. This value, applied to the
high-energy correction, is taken as an uncertainty.

4.3.2 Synchrotron Energy Loss and Bending-Field Spreading: ∆Eb (BFS)

Considering a machine with bending magnets and horizontal orbit correctors only, and neglect-
ing for the moment the effects of orbit distortions, equations 1 and 2 lead to the following
expressions for the beam energy and energy loss per turn by synchrotron radiation:

Eb =
ec

2π
(Bd Ld + Bc Lc); (10)

U0 =
Cγ (ec)2

2π
E2

b (B2
dLd + B2

cLc). (11)
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Figure 6: The orbit lengthening ∆L caused by the horizontal correctors, plotted against fill
number for 1996–1999.

Here Bd is the field, and Ld the total (magnetic) length of the dipole magnets. Bc and Lc are the
corresponding quantities for the horizontal correctors. Practically, the maximum value of U0

is dictated by the available RF voltage. Keeping this constant, and assuming BcLc � BdLd,
allows the maximum attainable energy, EM

b , to be written:

EM
b ≈ Ed M

b

(
1 +

1

2

BcLc

BdLd

(
1 − 1

2

Bc

Bd

))
, (12)

where Ed M
b is the maximum energy that can reached when Bc = 0 and the dipoles alone are

used to define the beam energy. From expression 12 it is clear that the beam energy may be
increased above Ed M

b by using the correctors to spread the bending over more magnets. This
method is referred to as bending-field spreading (BFS) [16].

BFS was deployed in physics operation during the 2000 LEP run. In order to maximise its
effect ∼ 100 additional corrector magnets which had previously never been cabled, or had been
removed from the tunnel, were connected or re-installed. Including these, BcLc ≈ 6.5 Tm, to
be compared with BdLd = 2092 Tm, at a nominal Eb of 100 GeV. Since Bc/Bd ≈ 1/2, the
maximum additional energy predicted by expression 12 is 120 MeV. (This calculation assumes
that 20% of the available bending field of the correctors is reserved for orbit steering.)

A more complete analysis of BFS must account for orbit distortions. The kicks provided by
the horizontal correctors cause the beam to move away from the central orbit in the defocus-
ing quadrupoles, and this leads to an additional source of bending field which approximately
doubles the energy boost. The exact value of boost is calculated from the simulation program,
MAD [26]. This has been done and then parameterised as a function of corrector setting. The
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luminosity-weighted corrections to the energy model from BFS are included in table 4. (Note
that these are the corrections to Eb rather than Ed M

b , and hence are larger than the values dis-
cussed above.) The lower boost at the 205 GeV energy point is because the BFS was not used
at the start of the run, and then initially operated below its maximum setting.

The LEP spectrometer was used in dedicated experiments to measure the energy boost from
the BFS. This procedure is described in section 8.8. These measurements confirm the expected
energy gain with a precision of 3.5 %, which is taken as the systematic uncertainty in the model.

4.4 Quadrupole Current Imbalance: ∆Eb (QFQD)

Any different phase advance in the horizontal and vertical planes of the LEP optics meant that in
the quadrupole power bars running around the LEP ring, at a distance of roughly 1 m from the
vacuum chamber, there was a current difference between the circuit feeding the focusing (QF)
and defocusing (QD) quadrupoles. This imbalance resulted in an additional source of bending
field seen by the beam, which is accounted for by the QFQD component of the energy model.

The dependence of the QFQD energy correction on the quadrupole current imbalance was
calibrated at LEP 1 to a precision of 25% [3].

5 Evaluation of ECM at the Interaction Points

The estimate of the collision energy at each experimental interaction point (IP) 2, EMOD
CM , is

given by

EMOD
CM = 2 × EMOD

b +
∑

∆ECM,

where
∑

∆ECM represents the sum of several possible corrections, which are in principle IP
specific. The most important of these arises from the fact that the local beam energy at each
IP differs from Eb, the average energy around the ring, because of the combined effects of
synchrotron radiation and the RF system. Dispersion effects and the possibility of an energy
difference between the e− and e+ beams must also be considered. In practice no corrections
are applied for these latter terms, but the associated uncertainties are accounted for in the error
assignment.

5.1 Corrections from the RF System

As explained in section 2.1, the energy loss of the beams due to synchrotron radiation was re-
plenished by stations of super-conducting RF cavities situated on either side of the experimental
IPs 3. It is necessary to model the variation in energy around the ring in order to calculateEMOD

CM .
The calculated variation is shown in figure 7 for both e− and e+ for a typical fill in 2000. The
continuous loss from the synchrotron radiation and the localised boosts from the RF stations
lead to a characteristic sawtooth distribution in both the energy loss and in the horizontal dis-
placement between the two beams. The variation in horizontal displacement is measured by an
array of 500 BPMs distributed throughout the ring.

2The four experimental interaction points were IP2 (L3), IP4 (ALEPH), IP6 (OPAL) and IP8 (DELPHI).
3Several copper cavities, retained from LEP 1, also contributed ∼ 3% to the overall voltage.
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Figure 7: The RF sawtooth for a typical RF configuration in 2000. The electron beam is rep-
resented by the left-going solid line, the positron beam by the right-going dotted line. The
locations of the experiments and the LEP spectrometer are indicated. ∆E = 0 corresponds to
the average beam energy of LEP. ∆ECM is the correction to EMOD

CM at each IP due to RF effects.

The sawtooth variations are to first order anti-symmetric between the two beams, hence the
correction to EMOD

CM is in general small. The calculation of the sawtooth is however rendered
challenging by the instability of the RF system, the configuration of which varied from fill to
fill as units broke and were repaired, and within fills, as units tripped. Additional inputs to the
calculation come from knowledge of the absolute voltage calibration scale, and the alignment
and phasing of the cavities.

During 2000 (and late in the 1999 run) dedicated fills were taken with single beams in
order to perform Eb measurements with the energy spectrometer. Knowledge of the sawtooth is
required to relate the local energy at the spectrometer, close to IP3, with EMOD

b . The demands
placed on the RF modelling are more exacting for these single-beam fills, as the result for
an individual spectrometer measurement is directly sensitive to the absolute knowledge of the
sawtooth. The spectrometer apparatus and analysis are discussed in sections 7 and 8.

5.1.1 Modelling the Sawtooth

The modelling of the energy corrections from the RF system is carried out by the iterative
calculation of the stable RF phase angle ψs which proceeds by setting the total energy gain,
VRF sinψs, of the beams as they travel around the machine equal to the sum of all known en-
ergy losses. Here VRF is the total RF accelerating voltage which is calculated using detailed
measurements of the RF cavities, such as their voltage calibrations and their longitudinal mis-
alignments. When available, the measured value of the synchrotron tune,Qs, and the difference
in horizontal displacement between the beams as they enter and leave the experimental IPs, are
used to constrain energy variations due to the overall RF voltage scale and RF phase errors. (A
full discussion of the synchrotron tune and its relationship to energy loss is given in section 9.)

The model of the RF system described above has been used to calculate the centre-of-mass
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Year ’96 ’97 ’98 ’99 ’00

Enom
CM [GeV] 161 172 183 189 192 196 200 202 205 207

IP 2 (L3) 19.8 19.4 8.2 6.0 8.8 8.2 8.0 8.0 3.4 3.0

IP 4 (ALEPH) -5.6 -5.8 -10.8 -9.2 -12.6 -14.0 -13.8 -13.0 -11.0 -9.8

IP 6 (OPAL) 20.3 19.8 5.6 -2.6 -5.8 -5.2 -5.4 -4.4 -0.6 0.0

IP 8 (DELPHI) -9.4 -8.4 -13.2 -10.4 -17.2 -16.0 -15.0 -14.0 -11.4 -9.8

Table 6: The luminosity-weighted RF corrections to EMOD
CM in MeV at each IP for each nominal

energy point.

energy corrections due to the RF system parameters for the whole of LEP 2 running. Its cal-
culation of the energy loss in the LEP arcs, however, treats each arc as a single entity, rather
than considering each magnetic component individually. For the spectrometer studies, a more
detailed model has been developed based on the MAD program [26]. This model incorporates
the detailed measurements of the RF cavities, on top of the complete specification of the LEP
magnetic lattice [17]. Such an approach allows the calculation of the beam energy at any point
in LEP, not just at the IPs. This feature permits the performance of the model to be studied
through comparison with BPM data in the LEP arcs, which are sensitive to the effective e+e−

energy difference. The technique is illustrated in figure 8, where the energy offset between the
electron and positron beam is clearly seen for two different RF configurations. A comparison
of the two sawtooths allows the parameters of the system to be determined, in particular the net
RF phase error at any LEP IP. Two experiments performed late in the 2000 run, in which the
RF at each IP was powered down and up in turn, have been used to calibrate the method.

The average corrections for all of the LEP 2 running are shown in table 6. Comparisons
made between the two models at selected energy points show agreement to within 1 MeV.

5.1.2 Error Assignment on the RF Corrections

The error assignment for the RF ECM corrections arises from the following considerations:

• Any discrepancy between calculated and measured control variables, such as the Qs or
the horizontal beam displacements, indicates imperfections in the model. For instance,
discrepancies in the Qs reveal a lack of knowledge of the overall voltage scale or a phase
error in the RF system;

• From measurements made with a beam-based alignment technique [18], the locations of
the cavities are only known with a precision of 1 mm;

• A small uncertainty comes from the unknown misalignments and non-uniformities of all
the magnetic components of LEP. This contribution can be estimated by simulating an
ensemble of machines with imperfections similar to those expected in LEP.

In all cases the range of values of the energy corrections obtained when allowing the machine
parameters to vary over their allowed values is taken as the systematic error. The procedure
is discussed in detail in [3]. It should be noted that those energy-loss uncertainties important
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for the understanding of the Qs and detailed in section 9 have negligible impact on the ECM

corrections at the IPs.
The total error on EMOD

CM from the RF correction is estimated to be 8 MeV for the 183 GeV,
189 GeV and 192 GeV energy points, and 10 MeV for all other running. The conservative
assumption is made that these uncertainties are fully correlated between IPs and energy points.

The BPM data, such as those seen in figure 8, provide a very powerful constraint on the
MAD model of the individual beam sawtooth at the spectrometer, which is an important in-
gredient in the analysis presented in section 8. The error on this calculation for the dataset of
spectrometer measurements is estimated to be 10 MeV. This value is set by the uncertainty in
applying the results of the calibration measurements, made at the end of the 2000 run, to the
earlier spectrometer experiments.

5.2 Possible Electron Positron Energy Differences

The energy of the electron and positron beams are not expected to be exactly identical. Orbit dif-
ferences lead to small differences in the integrated bending field seen by each beam. The main
cause for orbit differences at LEP is the energy sawtooth that separates the orbits at the highest
beam energies by up to a few millimeters in the horizontal plane. Due to the strong energy
dependence of the sawtooth, the expected energy difference, which is smaller than 1 MeV at 50
GeV, can reach 3-4 MeV around 100 GeV, according to simulation. To cover this possibility an
uncertainty of 4 MeV is assigned on EMOD

CM .

5.3 Dispersion Effects

A shift in the centre-of-mass energy occurs if there is a difference in the vertical dispersion,
∆D∗

y, between the electron and positron beams, and a vertical offset, δy, between the beam
centres at collision. This shift, ∆ECM, is given by

∆ECM = −1

2

δy

σ2
y

σ2
Eb

Eb
∆D∗

y , (13)

where σy is the vertical beam size and σEb
is the spread of the beam energy (see section 12).

During LEP running beam-beam deflection scans were regularly conducted to minimise the
vertical offset at each IP. The primary purpose of these scans was to optimise the experimental
luminosities, but the procedure also had the benefit of suppressing dispersion induced energy
shifts.

The residual bias toECM from dispersion effects has been calculated for LEP 2 operation by
using expression 13 and taking values for δy based on the shifts to the beam positions required
after each deflection scan. The other quantities are input from MAD. The calculated value
of ∆D∗

y is typically < 1 mm at all IPs. Dispersion measurements were made each year, in
which successive deflection scans were repeated after modifying the beam energy through RF
frequency changes, and ∆D∗

y then extracted from the change of δy. The measurements agree
with the expectations to within 50%.

The luminosity weighted mean shifts in the centre-of-mass energy are estimated to be less
than 2 MeV, and the instantaneous shifts are generally below 6 MeV. The largest source of
uncertainty in the calculation arises from the knowledge of ∆D∗

y. In the energy model the shifts
are not applied as corrections to ECM. Instead 2 MeV is assigned as a systematic uncertainty to
the collision energy, with full correlation between IPs and a 50 % correlation between years.
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6 Constraining the NMR Model with the Flux-Loop

Each of the main dipoles had a copper loop embedded in the lower pole. These were connected
in series throughout each of the octants of LEP. The flux variation in each octant was measured
by a digital integrator. This system constituted the flux-loop (FL) [19]. It is estimated that
the FL sampled 96.5% of the total bending field. In the LEP 1 era, prior to the routine use of
RDP, dedicated FL cycles were regularly performed. These included a polarity inversion of the
dipoles in order to determine the remanent field. From these cycles, and through expression 1,
the absolute energy scale at the Z was determined with ∼ 10−4 precision [20].

The need to extrapolate up to fields equivalent toEb = 100 GeV implies that it is impractical
to use the FL as a tool of absolute energy calibration at LEP 2. Instead ramps were made
from fields corresponding to RDP energies, up to fields equivalent to 100 GeV and beyond. In
the analysis the evolution of the (almost) total bending field, as measured by the FL, can be
compared to that predicted by the NMR model, thereby providing a constraint of the LEP 2
energy scale.

6.1 Measurement Procedure and Datasets

Measurements using the FL system were carried out during dedicated experiments, without
beam, in each of the years of LEP 2 running. In each measurement the excitation current was
ramped through a series of increasing values, which mostly corresponded to the physics energy
settings, and the readings of the FL recorded in each of the eight LEP octants. The correspond-
ing values of the 16 NMRs were also recorded. A summary of the experiments is given in
table 7. Measurements were made in the region of 41 to 61 GeV, that is, in the region where
there are also RDP data, as well as at higher energies. Also given in table 7 is the corresponding
highest equivalent beam energy used for each year. In 1996 several FL measurements were also
made, with equivalent beam energies up to 86 GeV. These were analysed on-line and are not
part of the datasets considered here.

The FL measurements used in the analysis are the averages over the individual measure-
ments made in each of the eight octants of LEP. However, particularly in the later years, not all
of the octants were fully functioning due to radiation damage. Also, as discussed in section 3.2,
the number of available NMR probes at any one time varied for the same reason.

Year Number of Ramps Highest Equivalent Eb [GeV]

1997 5 101

1998 18 101

1999 18 103

2000 10 106

Table 7: The number of FL ramps made in each year, together with the corresponding highest
equivalent beam energy measured in that year.
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6.2 Fitting Procedure

Fits may be performed between the NMR probes and the FL in the well-understood region of
41–61 GeV. These fits can be used to predict the average bending field as measured by the FL at
the settings corresponding to physics energies. If the NMR probes can predict the FL field, and
if the beam energy is proportional to the total bending field, then it is a good assumption that the
probes are also able to predict the beam energy in physics. The FL cannot be used to predict the
beam energy in physics directly, since neither the slope nor the offset of the relationship between
measured field and beam energy are known with sufficient precision to make the extrapolation
needed over the ∼ 50 GeV interval.

Two methods are used to make an estimate of any possible non-linearity, with beam energy,
in the procedure used in calculate ENMR

b at physics energies.
In method A, for each FL excitation current the equivalent beam energy from the dipoles,

ENMR
b , is determined from the NMR probe readings and expression 5, using the values of ai

and bi established from the RDP data. In the 41-61 GeV interval of each FL ramp this is fitted
against EFL

b , the equivalent energy as estimated by the FL, where

EFL
b = c+ dBFL. (14)

Here c and d are the fit coefficients, and BFL the FL reading averaged over all available octants.
The fit results are then used to findEFL

b at high energy, and this is compared with the value from
the NMRs.

In method B each NMR probe i is used to make an estimate of the FL reading, BNMR i
FL

through the linear relation

BNMR i
FL = ei + f iBNMR i, (15)

where ei and f i are determined from a fit to BFL in the range 41–61 GeV. These estimates,
averaged over all available probes irrespective of which octants they are in, give a mean NMR
prediction of the FL reading,BNMR

FL . The difference betweenBNMR
FL andBFL at high energy can

be expressed as an energy through multiplying by the ratio of average slopes in expressions 5
and 15 (〈b〉/〈f〉), to give a measure of EFL

b −ENMR
b .

Both methods provide a comparison between the FL and the NMRs at high energy, and
thus are sensitive to non-linearities in the NMR model. The NMR data are however used in
a different manner by the two procedures, and this provides robustness against, for example,
fluctuations caused by the varying number of probes available at each measurement point.

6.3 Comparison of FL Results Using Different NMRs

A strong correlation is expected between the offsets ai and slopes bi in equation 5 from the RDP
calibration, and the offsets ei and slopes f i in equation 15 from the FL. The fitted parameters for
each NMR are shown in figure 9, and the expected correlation is visible. The average offset, 〈e〉,
is −79.35 Gauss, with an RMS spread over the 16 values of 0.69 Gauss. This offset corresponds
to the 7 GeV nominal beam energy setting at the start of the FL ramp. The average slope, 〈f〉,
is 0.9810, with an RMS spread over 16 NMR probes of 0.0026. The field plates placed below
the NMRs, in order to improve the uniformity of the field, cause the slope to be 2% different
from unity.
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The behaviour of the different NMRs can be seen in figure 10. This shows the differences
between the FL estimate of the beam energy, calculated with method B, and the individual
NMR estimates, ENMR i

b , plotted against the corresponding probe residuals of figure 3. The
comparison is made at a beam energy of 100 GeV. Again, a strong correlation is observed.

These studies show that the FL measurements behave in a similar way to the RDP measure-
ments in terms of the results from individual NMRs and give confidence that the FL data can be
used to constrain the linearity of the NMR model.
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Figure 9: The offsets (a) and slopes (b) of equations 5 and 15 comparing the field measured by
each NMR probe with the RDP and FL measurements. The values shown are averages over all
the FL measurements. There is one entry per NMR probe in each plot.

6.4 Variation of FL Results for Different Octants and Years

The FL results used in the standard analyses are the averages of the available individual mea-
surements for each of the eight octants of LEP. The results for the individual octants using
method A are shown in figure 11. The differences between the FL value for each octant and
the NMR values are computed at a beam energy of 100 GeV. The values for each octant have
also been evaluated separately for each of the four years in which there are data, and the er-
rors shown in figure 11 are half of the difference between the maximum and minimum of these
yearly values. The results are consistent between octants, and exhibit year-to-year stability. The
values from individual octants span a range of approximately 10 MeV. The RMS of the mean
values from different octants is 5.5 MeV.

In figure 12 the values of EFL
b − ENMR

b from method B are shown as a function of time.
Each entry corresponds to a single FL ramp and the data from each year are separated. The
beam energy at which the differences are computed varies from year to year and is indicated on
the plot. It represents the main value at which physics data were taken in the year. The error
bars shown are the RMS values of the results from each of the NMR probes. It can be seen that
there is no strong time dependence in the measurements.
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Figure 10: For each NMR probe, the difference between the FL energy, from method B, and
that estimated from the NMR probe is plotted against the difference between the mean NMR
energy, averaged over all probes, and that from the individual probe in physics running. The
differences are calculated at a beam energy of 100 GeV

6.5 Comparison of FL and NMR Energy Model Results

Table 8 lists the mean values of the EFL
b − ENMR

b differences for each year, averaged over all
the measurements in that year, from method A, for a beam energy of 100 GeV. The mean value
averaged over all data is also included.

Table 9 presents the equivalent results from method B. A large part of the RMS scatter in
the results comes from the different behaviour with energy of the NMR probes. Thus, if one or
more of the NMR probes is not functioning for all, or part of, a particular measurement then
this will increase the scatter.

The two fitting methods A and B are very compatible and the overall offset with respect to
the energy model is small. However, the RMS values are smaller for method A, since the values
used in this method are already averaged over the NMR probes.

6.6 Linearity in the High-Energy Region

The FL is the only device which allows a comparison with the NMR model measurements over
a wide range of effective beam energies. The results of this comparison, averaged over all
octants and all ramps, are presented, as a function of Eb, in figure 13. The error bars shown are
calculated from the spread of the individual FL measurements, over all years, at a givenEb. The
estimate from the FL is slightly lower than that from the NMR model and this difference grows
somewhat with increasing beam energy. Also shown in figure 13 is a linear fit to the differences
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Figure 11: The difference, in MeV, between the magnetic field measured by the FL and pre-
dicted by the NMR probes for each octant separately, using method A. The differences are
calculated at a beam energy of 100 GeV.

Year EFL
b − ENMR

b [MeV] RMS [MeV]

1997 2.8 4.4

1998 -4.5 6.1

1999 -3.3 6.3

2000 -4.7 12.2

All Years -3.3 7.4

Table 8: Difference between the beam energy estimated by the FL and that using the NMR
model at 100 GeV for each year separately, and also for all years together. The values given are
from method A.

over the range 72 to 106 GeV equivalent beam energy. This fit gives a slope of -0.125 ± 0.028
MeV/GeV and an offset, at a beam energy of 100 GeV, of -5.2 ± 0.6 MeV. The χ2 for the fit is
13.2 for 5 degrees of freedom, giving a probability of 22%. The errors are computed from the
statistical spread of the FL measurements, and do not include any systematic effects.

6.7 Robustness Tests and Systematic Uncertainties

Changes of the requirements in the fitting and extrapolation procedure of method A have been
investigated. These include changing the minimum number of FL measurements in the range
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Figure 12: The difference, in MeV, between the magnetic field measured by the FL and pre-
dicted by the NMR probes for each of the FL measurements, using method B. The data are
shown separately for each year.
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Year EFL
b − ENMR

b [MeV] RMS [MeV]

1997 0.2 10.3

1998 -5.7 12.6

1999 -5.5 14.6

2000 -1.4 18.2

All Years -4.2 17.7

Table 9: Difference between the beam energy estimated by the FL and that using the NMR
model at 100 GeV for each year separately, and also for all years together. The values given are
from method B.

41-61 GeV from 2 to 4, and changing the range of the fit in the low-energy region from 41-61
GeV to either 41-57 GeV or 50-61 GeV. All these modifications to the procedure give changes
in the difference between the FL and the NMR model at 100 GeV, and averaged over all data,
of 3 MeV, or less. Especially in the later years some of the octants did not always give FL data.
Omitting each of the octants in turn from the analysis changes the mean value of EFL

b − ENMR
b

by less than 2 MeV.
There is very little redundant information in the FL measurements which allows a rigorous

study of the possible systematic uncertainties to be performed. The accuracy of the device
has previously been estimated to be about 10−4 [20], which corresponds to an uncertainty of
10 MeV at Eb = 100 GeV. This is compatible with the RMS values seen in the octant-to-
octant variations, and the results of the various extrapolation methods used (although part of
this scatter is attributable to the behaviour of individual NMR probes).

The main uncertainty in the results comes from the assumption that the measured FL values
are linear with the excitation current, and thus the beam energy. This can only be tested where
there are RDP measurements, namely in the energy range 41-61 GeV. As a test of the linearity a
special fit has been made to the RDP data for all years, using equation 5 as before, but excluding
the 55 and 61 GeV points. A similar procedure has been carried out for the FL measurements
using method A, and again not using the 55 and 61 GeV points. In both cases the fits are
compared with measurements at 56.1 GeV, the weighted mean value of the 55 and 61 GeV
RDP data. These residuals are plotted in figure 14. As explained in section 3.3, the RDP-MOD
residuals exhibit the non-linearity in the NMR model. The FL-NMR residuals are sensitive to
both non-linearities in the NMR model, and in the FL itself. Hence any separation at 56.1 GeV
between the two residuals signifies a non-linearity in the FL alone. A 2.9 MeV difference is
observed. In order to estimate an associated uncertainty at 100 GeV, this difference is scaled up
by the ratio (100-45.7)/(56.1-45.7), where 45.7 GeV is the centre-of-gravity of the RDP fit, and
a value of 15 MeV obtained.

It is known that a small fraction of the total bending field was not measured by the FL. This
arose from three sources:

• The FL sampled only 98% of the total bending field of each dipole. The effective area
of the FL varied during the ramp because the fraction of the fringe fields overlapping
neighbouring magnets changed. The saturation of the dipoles, expressed as the change in
effective length, was measured before the LEP startup on a test stand for different magnet
cycles. The correction between 50 and 100 GeV is of the order of 10−4, corresponding to
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Figure 13: The difference, in MeV, between the magnetic field measured by the FL and pre-
dicted by the NMR probes as a function of the nominal beam energy, using method A. Data
from all years are used. For plotting, certain energy points have been averaged together. A
linear fit to the differences is also displayed.

a 5 MeV uncertainty in the physics energy at 100 GeV, and scaling linearly with energy
for other values.

• The weak dipoles matching the LEP arcs to the straight sections contributed 0.2% to the
total bending field. Assuming that their field was proportional to that of the standard
dipoles between RDP and physics energies to better than 1%, their contribution to any
non-linearity in the model is around 1 MeV.

• The bending field of the double-strength dipoles in the injection region contributed 1.4%
of the total. Their bending field has been measured by additional NMR probes installed
in the tunnel, and is found to be proportional to the bending field of the main dipoles to
rather better than 10−3, which gives a negligible additional systematic uncertainty.

The difference between FL and RDP residuals in figure 14 may be partly caused by these un-
measured contributions to the total bending field. To be conservative, however, they are consid-
ered as separate sources of uncertainty in the final error assignment.

6.8 Summary of FL Results

The central values of the FL analysis in the high-energy region are taken from the fit to the data
of figure 13.
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Figure 14: Residuals from the NMR fits to the RDP data and FL data for all years, using method
A. The error bars indicate the statistical scatter over the measurements. Only the data below 55
GeV are used in the fits. (Note also that the RDP data at 55 GeV and 60 GeV, plotted separately
in figure 2, have here been averaged together into a single point.)

To determine the total systematic error to the FL measurement, it is assumed that the 15 MeV
uncertainty arising from the non-linearity comparison is independent from the estimated 5 MeV
uncertainty associated with the bending field lying outside the FL. Added in quadrature these
give a value of 15.8 MeV at Eb = 100 GeV. This systematic uncertainty is taken to be fully
correlated as a function of beam energy and to increase linearly from a value of zero at 47
GeV, where the FL measurements are normalised to the RDP measurements. The range of FL
measurements is from 72 GeV to 106 GeV, and this procedure gives an uncertainty which grows
from 7.5 MeV to 17.6 MeV over this span.

7 The LEP Spectrometer

A project was initiated in 1997 to install an in-line energy spectrometer into the LEP ring with
the goal of measuring the beam energy to a precision of ∼ 10−4 atEb ∼ 100 GeV. By replacing
two existing concrete LEP dipoles with a single precisely mapped steel dipole, and installing
triplets of high-precision BPMs on either side, the local beam energy could be measured as the
ratio of the dipole bending field integral to the deflection angle. The full apparatus was installed
close to IP3 and commissioned in 1999, and dedicated data taking took place throughout the
2000 run. A schematic of the spectrometer assembly is shown in figure 15.

While measuring the absolute deflection angle θ to the required accuracy is too great a chal-
lenge, a high-precision relative measurement can be performed by calibrating the spectrometer
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Figure 15: A schematic of the LEP spectrometer, situated between two quadrupole magnets
close to IP3. The various components are discussed in the text.

against a low-energy reference point,Eref
b , well known through RDP, and measuring the change

in bending angle, ∆θ, as the beam is ramped to the high-energy point of interest. Then the
relative difference between the energy determination from the spectrometer, E SPEC

b , and that
predicted by the energy model, EMOD

b , is given by:

E SPEC
b − EMOD

b

EMOD
b

=
Eref

b

EMOD
b

∫
B dl∫
B dl ref

(
1 +

∆θ

θ0

)
− 1, (16)

where
∫
B dl ref and

∫
B dl are the integrated bending fields at the reference point and mea-

surement point respectively. The spectrometer dipole is ramped with the LEP lattice, and so its
bending angle, θ0, remains approximately constant at a value of 3.77 mrad, and ∆θ << θ0.

With a triplet lever-arm of roughly 10 meters, the spectrometer BPMs must have a precision
of ∼ 1 µm in the bending plane and be stable against mechanical and electronic drifts at this
same level. This stability is only needed, however, for the few hours required to span the data
taking at the reference point and the measurement point. How these problems were addressed
is discussed in sections 7.3 and 7.4. The ratio

∫
B dl /

∫
B dl ref must be known to better than

10−4; the strategy pursued to achieve this is described in sections 7.1 and 7.2.
The beam energy at the spectrometer differs from the value of Eb averaged around the

ring because of the RF sawtooth. Correcting for the sawtooth is an important ingredient in the
spectrometer measurement. The same model was used as described in section 5.1.

7.1 The Spectrometer Dipole

The spectrometer magnet was a custom-built 5.75 m steel dipole similar in design to those used
in the LEP injection region. It provided the same integrated bending field as the two concrete
core dipoles it replaced, but over a shorter length, thereby maximising the space available for
the BPM instrumentation. As a steel cored magnet it was also less susceptible to aging and
had better stability under temperature variation. Thermal effects were further suppressed by
water-cooling the excitation coils through an industrial regulation circuit which limited the rise
in coil temperature, when ramping from Eref

b to high energy, to 3 − 4◦C. Temperature changes
were monitored by several probes installed at a variety of locations.
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Figure 16: The magnetic mapping test stand, showing inset the components of the moving arm.

Mounted directly in the gap of the spectrometer magnet under the beampipe were four NMR
probes which continuously monitored the magnetic field strength. Two of these probes were
optimised for measurements at fields equivalent to 60 GeV and below, the other two for fields
corresponding to 40 GeV and above. The instruments were situated in precision mounts similar
to those used for the 16 probes of the NMR model. During LEP operation radiation damage
required that each probe had to be replaced two or three times during the year.

Field maps of the total bending field were performed in the winter of 1998-9 before the spec-
trometer magnet was installed in the LEP tunnel (the ‘pre-installation measurement campaign’ ),
and again in 2001-02 after the magnet was removed following the LEP dismantling (the ‘post-
LEP measurement campaign’ ). These maps were performed in a special mapping test stand
as shown in figure 16. Using a precision motor stage instrumented with an independent NMR
probe mounted on a carbon fiber mapping arm, the core magnetic field of the dipole was sam-
pled every 1 cm along the longitudinal axis with an intrinsic relative precision of 10−6 for a
variety of excitation currents and environmental conditions. The length scale was determined
to a relative precision of 10−5 using a heterodyne ruler and verified with a laser interferometer.
In the end-field region where the mapping NMR probe no longer locked due to the high field
gradient, temperature-stabilized Hall probes, also mounted to the movable arm, were used to
complete the field mapping. While these Hall probes had an intrinsic relative precision of 10−4,
the end field represented only about 10% of the total dipole bending field, and thus a relative
precision per map of 10−5 was achieved. With roughly 550 individual field readings taken per
map, a single dipole map required roughly 30 minutes to complete.

The field profile at 100 GeV is shown in figure 17, indicating the extent of the end fields. In
both the mapping laboratory and the tunnel these end fields were truncated 0.5 m away from the
dipole with mu-metal shields. Figure 17 also includes a zoom into the core region for a single
map, to illustrate the uniformity of the field.

Using the results of the individual field maps, a model has been constructed to relate the
total integral bending field of the dipole to the local field value measured by the four permanent
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Figure 17: The longitudinal profile of the spectrometer dipole field at an excitation current
corresponding to 100 GeV as measured by the mapping campaigns. Also shown is a zoom of
the core region for a single map.

reference NMR probes. A two-parameter fit is performed between the probes and the integral
field for those excitation currents where each NMR was sensitive. A ∼ 10−4 / ◦C correction is
included to account for the temperature dependence of the end fields, which are not tracked by
the NMR probes. The model result is then taken to be the average of the individual predictions
from all valid probe readings.

The relative residual differences between the measured integrated dipole field, for various
datasets, and the model prediction after temperature correction, fitted to the post-LEP campaign
data, are plotted in figure 18. Each point represents the mean value over all maps at an equivalent
energy setting, and the error bar the RMS deviation over these maps.

The points corresponding to the post-LEP data (‘Arm, new Hall probes’ ) lie within ±1.5 ×
10−5 of zero, and each have RMS deviations of around 0.5 × 10−5. When looking at the pre-
installation data (‘Arm’ ), however, an offset of −8×10−5 can be seen. This offset is attributed to
an estimated 150 µm uncertainty in the location of the semiconductor Hall plate with respect to
the Hall probe casing. Such an alignment uncertainty biases the measurement of the end-fields,
and introduces a relative error of 12 × 10−5 on the total field integral. This size of this effect
is therefore consistent with the observed offset. This explanation was confirmed by making a
sub-set of maps with the original instruments, the results of which are included in the figure
(‘Arm, old Hall probes’ ), and are seen to agree with the pre-installation data. The alignment
error is fully correlated between energy points and disappears in the ratio

∫
B dl /

∫
B dl ref .

Additional maps were made with the arm displaced horizontally, in order to probe for any
systematic effects which would arise from the finite sagitta of the beam. These show relative
variations in the field integral of 10−6 for displacements of 1–2 cm, which is negligible for
the energy calibration. Excellent stability is also observed for maps made with small vertical
displacements.

Since the precision field mapping was performed in a magnetic test laboratory and not in
the tunnel where the spectrometer operates, an additional in situ field-mapping technique was
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developed using an NMR probe and miniature flux coil mounted on a trolley which could be
inserted directly into the LEP vacuum chamber. A laser interferometer was used to monitor the
position of the trolley. The relative precision of this method is similar to that of the mapping-
arm approach. Using this technique measurements were first made in the laboratory during the
pre-installation campaign, with a section of vacuum chamber inserted into the dipole gap, and
then again in the tunnel prior to the 1999 run. The residuals of the field integrals measured with
this method are also shown in figure 18 (‘Trolley’ ). These results are seen to be consistent with
each other and with the arm measurements of the pre-installation campaign, indicating that the
field the beam sensed in the tunnel was the same as that measured in the laboratory. In contrast
to the moving arm method, the mapping trolley has no significant systematic error associated
with the alignment of the instrument used to probe the end-fields. Both end-fields are mapped
by the same flux-coil, and hence any bias coming from uncertainty in the flux-coil position is
of opposite sign in the two regions, and largely cancels out in the total field integral.

In the spectrometer energy analysis, detailed in section 8, it is the model fitted to the post-
LEP data taken with the new Hall probes which is used to calculate the integrated bending
field. As the mean values of the residuals are well determined at each magnet setting, these are
applied as corrections to the model. The post-LEP campaign based model is chosen, because
this dataset has significantly more maps at settings around 50 GeV and 100 GeV than available
from the pre-installation and mapping trolley campaigns, and therefore is expected to provide
the best estimate of

∫
B dl /

∫
B dl ref at the fields relevant for the spectromter measurements.

Comparison with the results of the other models are used in the systematic error assignment.
More information on the spectrometer dipole and the mapping campaigns and analysis can

be found in [21].

7.2 Environmental Magnetic Fields

In addition to the bending field provided by the spectrometer dipole itself, in the LEP tunnel
there were several other sources of magnetic fields which influenced the beam. The single
largest effect came from the earth’s magnetic field, which was measured to be � 400 mG in the
LEP tunnel. Another contribution arose from the cables which provided current to drive both
the main bending dipoles and the quadrupoles upstream from the spectrometer, which were
mounted on the tunnel wall about 1 m from the beampipe. The magnetic fields produced by
these currents were non-negligible and varied depending upon the nominal LEP beam energy
and the specific details of the machine optics.

The ambient field strength in the tunnel was explicitly measured as a function of distance
along the beamline while powering the main bending dipoles at several nominal LEP energy
settings for both physics and polarisation optics. The data from these vertical field surveys are
shown in figure 19. The large spikes in the field, visible on either side of the spectrometer
magnet, correspond to the location of vacuum pumps which contained permanent magnets.
Away from these spikes the absolute value of the field can be seen to decrease as the energy is
raised, indicating that the contribution from the magnet cables is in the opposite sense to the
earth’s field. The change in field has a stronger energy dependence for the polarisation optics.

Each spectrometer arm was equipped with a fluxgate magnetometer capable of 3-axis field
measurements, situated immediately below the beampipe. These instruments allowed any vari-
ations in the ambient magnetic field to be monitored with time. Stable results are observed for
all spectrometer data taking.

The effect of this ambient magnetic field was to bend further the beams while they traversed
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Figure 19: Environmental magnetic field readings in the vertical direction as a function of
longitudinal position along the spectrometer for the polarisation (a) and physics (b) optics. The
dipole region is not shown. The large spikes are caused by permanent magnets situated in
vacuum pumps.

the BPM triplets. Without correction, an error on the calculation of the spectrometer bending
angle of ∼ 10−4 is made when ramping to high energy. It is estimated that this field was
monitored to a relative accuracy of 10%.

7.3 Beam-Position Measurements

Figure 20 (a) shows one of the six BPM stations of the spectrometer. Each BPM-block was
mounted on a stable limestone base. Surveys carried out after installation showed, that on
average, the blocks were well centred about their nominal positions with a RMS spread of
150 µm in the transverse plane. The horizontal position of each block could be adjusted by a
stepping motor with a reproducibility of < 100 µm.

In order to ensure mechanical stability between low and high energy, copper shielding ab-
sorbers, as shown in figure 20 (b), were designed to shadow the BPM pickup blocks from the
intense synchrotron radiation present in the LEP environment. During a ramp from Eref to
high energy the copper typically heated up by 15◦C, whereas the presence of the shielding and
independent temperature regulation suppressed the rise in the blocks themselves to ∼ 0.2◦C.

Any residual movement from temperature or other effects was tracked by a stretched wire-
position sensor system (WPS).

7.3.1 Geometry and Readout

Standard LEP elliptical BPM-blocks were used, with four capacitive button sensors. The dimen-
sions and button layout are illustrated in figure 21. From the relative signal strengths of each
button, Si (i = 1, 4), the BPM estimates of the beam position, xBPM and yBPM, are calculated
according to the following algorithm:
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Figure 20: A spectrometer BPM station (a), and a cut away view of the BPM block and absorber
(b). The various components are discussed in the text.

xBPM ∝ (S1 − S3) − (S2 − S4)

(S1 + S2 + S3 + S4)
, (17)

yBPM ∝ (S1 − S3) + (S2 − S4)

(S1 + S2 + S3 + S4)
. (18)

To achieve the desired 1 µm resolution and stability, customised BPM readout-cards were
developed in collaboration with industry, based on a design first used in synchrotron light source
storage rings [22]. In the BPM electronics, the four analogue button signals from each BPM
station were multiplexed into a common amplifier chain to reduce the effects of gain drifts on
the measured beam position. The spectrometer BPM system, therefore, was not capable of
turn-by-turn orbit measurements, but rather provided an integrated mean beam-position with a
frequency response of around 100 Hz. Additional filtering was added to reduce noise and lower
the overall frequency response to below 1 Hz. Gating allowed for the possibility of measuring
both e− and e+ positions during two beam operation, but more stable results were obtained
without this feature enabled and with single beams. The cards were housed in a barrack some
distance from the spectrometer, away from exposure to synchrotron radiation. A cooling system
kept their temperature stable during operation to 0.1 − 0.2 ◦C.

Prior to installation, the response of the BPM readout-cards was characterised in the lab-
oratory using an electronic beam-pulse simulator. The stability of the card response was in-
vestigated against factors such as beam current and temperature. No dependencies that would
introduce significant systematic effects during LEP operation [23] were found.

7.3.2 Relative-Gain Calibration

The response of the BPM readout differed between cards at the level of a few percent. In
order to minimise errors on the measurement of the change in bending angle, online relative-
gain calibrations were performed once or twice during almost all spectrometer experiments.

37



12

3 4

6.55 cm

3.
50

 c
m

x

y

Vacuum
aperture

Button

3.08 cm

3.
08

 c
m

Figure 21: Schematic of a LEP BPM-block and its button sensors, indicating the dimensions
and the button numbering convention assumed in the text.

These calibrations consisted of using four local corrector magnets to perform a series of beam
translations and rotations, and minimising the triplet residuals in each arm separately, with the
relative gains of the inner and outermost BPMs left as free parameters in the fit. The definition
of the triplet residuals is illustrated in figure 22 for the bending plane, which also shows the
BPM numbering definition. Residuals can also be constructed relating BPMs in different arms;
this was done in order to fix the relative gain of the two triplets. An analogous procedure was
used to determine the relative gains in the non-bending plane.

1 2 3456

x
z

RHS: (x1+x3) / 2 - x2LHS: (x4+x6) / 2 - x5

Figure 22: The definition of the BPM numbering scheme and bending plane triplet residuals.

Figure 23 shows a triplet residual for the same data before and after relative-gain calibration.
The beam is undergoing rotations of up to 100 µrad and translations of up to 600 µm. After
calibration the triplet residual has a width of 0.3 µm.

Repeated calibrations during individual spectrometer experiments indicate a relative-gain
accuracy of � 0.2%, and suggest no dependence on beam energy or beam current. Larger
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variations are seen between experiments.
From calibrations performed close in time in both the horizontal and vertical planes, cross-

talk effects between the x and y BPM readings can be studied. There are various possible
sources of coupling between the x and y BPM readings, including an unintentional rotation of
the BPM during installation, electrical cross-talk in the BPM readout system and non-linear
terms in the BPM response, as discussed in section 7.3.4. The data show no indication of
geometrical rotation, but do reveal electrical cross-talk of the order of 1% in some BPMs. Co-
efficients have been determined from these calibrations and then applied globally to all the
experiments, resulting in small corrections.

7.3.3 Absolute-Gain Calibration

While the in situ calibration procedure described in the previous section can accurately de-
termine the relative gain of the spectrometer BPMs, the overall absolute gain is still not con-
strained. To verify that the absolute-gain scale of the BPM system was sufficiently close to the
assumed nominal value, spectrometer data were taken while the LEP beam energy was varied
through changes in the RF frequency. An example of these measurements is shown in figure 24,
in which the bending angle is clearly seen to evolve linearly with the change in RF frequency,
∆fRF. From expression 7, and taking the spectrometer dipole field and local sawtooth correc-
tion to be stable throughout the fRF changes, the dependence is expected to be

∆θ

∆fRF
=

θ0
αc fRF

, (19)

in the case where the assumed absolute gain is correct.

-15

-10

-5

0

5

0 10 20

∆fRF[Hz]

0 20 40 60 0

Time [Minutes]

-∆
Θ

/Θ
 [1

0-4
]

∆fRF [Hz]

∆Θ
 [µ

R
ad

]

0

1

2

3

4

0 20 40 60

Figure 24: The change of bending angle measured in the spectrometer as the energy is varied
through a manipulation of the RF frequency. The dependence is linear with a slope value
consistent with expectations.
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Eight separate absolute-gain measurements were performed in 2000, using both physics and
polarisation optics. All measurements show good linearity between the change in bending angle
and RF frequency, and consistency amongst the BPMs in the bending angle measurement. The
ratio of the observed to the expected value of ∆θ/∆fRF for these experiments has a mean value
of 0.974 ± 0.036, which is consistent with unity.

An independent constraint on the absolute-gain scale was obtained using the stepping mo-
tors to move each BPM-block in turn during LEP operation. The observed change in triplet
residual could then be cross-calibrated against the physical movement measured by the wire
sensors. These measurements also confirm the nominal gain to be correct with a precision of a
few percent.

For the energy calibration measurements the nominal value of the gain scale is used with an
uncertainty of 5%.

7.3.4 Non-linearities and Beam-Size Effects

Geometrical effects introduce higher-order terms in the BPM response which can be significant.
Consider an idealised circular BPM with symmetrically distributed buttons at radius a, and a
Gaussian beam of horizontal and vertical size σx and σy respectively, positioned at coordinates
x, y. It can be shown that, in this case, the algorithm expressed in equation 17 gives for the
BPM horizontal measurement [24]:

xBPM ∝ x

[
1 −

(
3
σ2

x − σ2
y

a2
+
x2 − 3y2

a2

)]
, (20)

with a similar expression for the vertical coordinate. Therefore both the beam size and quadratic
position terms affect the measurement.

The energy calibration with the spectrometer relies on determining the change in bending
angle between Eref

b and high energy. Therefore what is relevant in equation 20 is how the
higher-order terms change between the two energy points. The effect of the quadratic term can
be suppressed by steering the beam at high energy as close as possible to the position it was
at Eref

b , and ensuring that this position is close to the centre of the BPM. This strategy also
minimises any related errors arising from uncertainty in the gains.

The beam-size term is more important, as σx grows with energy. (As σy << σx the change
in the vertical beam size need not be considered.) Furthermore, the beam size changes across
the spectrometer, because of the evolution of the LEP betatron function. With the polarisation
optics, the estimated horizontal beam sizes at 50 GeV are 0.5 mm and 1.2 mm, for BPM 6 and
BPM 3 respectively. At 90 GeV, these become 0.9 mm and 2.0 mm. Therefore, the bias to
the position measurement over the energy step is different across BPMs, and for a non-centred
beam an apparent change in bending angle results.

To examine the problem in detail, a simulation program has been developed to model the
BPM response [24]. In the case of a circular BPM this gives results consistent with expres-
sion 20. For the elliptical BPMs of the LEP spectrometer, it is concluded that the systematic
effects introduced in the energy measurement are small, provided that the beam passes within
∼ 1 mm of the BPM centres and is re-centred to better than a few 100 µm between the two
energy points.
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7.4 The Wire-Position Sensor System

Given the stringent 1 µm requirement on the stability of the BPM system, additional instrumen-
tation was installed to monitor independently the BPM positions. As shown in figure 15, the
position of each BPM-block was measured in both the horizontal and vertical plane by a pair of
stretched-wire capacitive-position monitors. One of the two wires spanned the entire 30 meter
length of the spectrometer apparatus to give an independent reference line. A pair of sensors
mounted on either side of each block, around 30 cm apart, allowed the effects of thermal expan-
sion to be differentiated from relative transverse motion. Six additional sensors (not shown),
mounted on invar 4 supports, placed on the limestone bases, provided reference measurements
of the wire position, independently of the BPM-blocks.

The intrinsic resolution of the sensors was found to be better than 0.2µm. The absolute
value of the gains and their stability with time were measured in the laboratory with a moving
stage and laser interferometer [25].

During commissioning of the spectrometer, the WPS system was observed to be unexpect-
edly sensitive to the LEP environment. Figure 25 (a) shows the response of a reference sensor
against time, throughout several successive LEP fills. Rapid positive changes in apparent po-
sition are seen, coincident with injection and ramp, followed by rapid decreases after beam
adjustment. During the fills themselves apparent position drifts of several microns sometimes
occur. Investigations showed this behaviour not to be physical; rather it was induced by a
change in the dielectric constant of air, brought about by the ionising effects of the synchrotron
radiation [25]. By installing additional synchrotron radiation shielding, and taking care to cen-
tre the wires in the sensors, these jumps were suppressed, as is displayed in figure 25 (b), which
shows the sensor reponse during several fills in which actual spectrometer measurements were
performed.

In figure 26 is shown the BPM-block expansion, as measured by the WPS system, plotted
against the change in block temperature for the spectrometer ramps from low to high energy in
2000. A clear linear dependence is seen, which agrees with the expected expansion coefficient
of aluminium to 25%.

4Invar is a 36% nickel 64% iron alloy with low thermal expansion properties.
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Figure 25: The response of a reference WPS over two 12-hour periods before (a) and after (b)
additional radiation shielding was installed, and the wire centred within the sensor. The vertical
solid lines indicate the declared start-of-fill and the dotted lines indicate a beam dump. Note
that (b) encompasses fills in which actual spectrometer measurements were performed.
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8 Eb Measurement with the LEP Spectrometer

8.1 Datasets

The dataset of experiments with usable spectrometer data at two or more energy points (multi-
point) consists of 18 single-beam fills distributed uniformly throughout the 2000 LEP physics
run. From these experiments, two largely overlapping samples are defined. The high-energy
sample is made up of 17 fills in which spectrometer data were taken under stable conditions at
both 50 GeV and high energy, typically 93 GeV but sometimes 90 GeV or 97 GeV depending
on the available RF voltage. In 5 of these fills, the 50 GeV point was calibrated by RDP. The
low-energy sample contains 8 fills with spectrometer data at two or more energy points between
41 GeV and 61 GeV, consisting of 21 such points in total. In this sample, 15 energy points
in 6 fills were calibrated by RDP. In the high-energy sample, some data were also recorded at
intermediate energies of 70 GeV and 80 GeV. In total 10 (5 e−, 5 e+) of the fills were taken
with the physics optics, and 8 (5 e−, 3 e+) with the polarisation optics. The important details
of the multi-point fills are summarised in table 10. This table also lists those fills used for the
bending-field spreading (BFS) calibration, described in section 8.8.

8.2 Characteristics of the Multi-Point Data

At each energy point in the multi-point fills, a period of data taking where the beams were
centred and stable is chosen, and the spectrometer data analysed. Table 11 shows the mean and
RMS variation of certain important parameters between measurements for the dataset, such as
beam position and BPM-block temperature. It can be seen that for both the low and high-energy
samples the beam was well re-positioned, and that the mechanical stability of the apparatus
remained good. The change in bending angle when ramping between energies is found to
be small, with typical values |∆θ| < 1 − 2µrad. As a preliminary step to further analysis,
corrections are applied to the BPM readings to account for mechanical shifts, as sensed by the
WPS system, and to compensate for the extra bending in the spectrometer arms induced by the
ambient magnetic field.

The BPM triplet residuals are important figures-of-merit in monitoring the integrity of the
spectrometer data. As explained in section 7.3.2, at a given energy point after gain calibration,
these residuals are stable with a width of < 1µm. Furthermore, the calibration coefficients are
equally applicable for other energy points within a given fill, giving good resolutions through-
out. The central values of these residuals, however, are in general found to move between
energy points. Figure 27 shows a typical example from fill 8443, where between 50 GeV and
90 GeV the triplet residuals are seen to move by −1.7µm in the left arm, and by −4.7µm in the
right arm. Such triplet-residual shifts (TRS) indicate an effective relative movement amongst
the BPMs, when ramping between energy points. These ‘movements’ cannot be real, as they
are not tracked in sign or magnitude by the WPS system. Rather they must arise in the response
of the BPM themselves, or in the readout electronics.

The characteristics of the TRS have been studied fill to fill. Figure 28 (a) shows the values
of the shifts in both arms for ramps between 50 GeV and high energy. They are predominantly
negative, and vary in magnitude. The means are −1.54± 0.53µm and −2.90± 0.31µm for the
left and right arms respectively. A similar behaviour is observed at lower energy. Figure 28 (b)
shows the mean value at each energy point of the TRS averaged over both arms (〈TRS〉), refer-
enced to 50 GeV, for the full multi-point dataset.
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Fill Date Optics Particle Eb of measurements [GeV] Interest of experiment

HE LE BFS

7129 11 May Pol e− 41 (P), 45 (P), 50 (P), 70, 93 • •
7251 25 May Pol e− 41 (P), 45 (P), 50 (P), 70, 93 • •
7391 8 June Phy e+ 50, 93 •
7491 18 June Phy e− 50, 93 •
7519 21 June Pol e− 41 (P), 50 (P), 93 • •
7676 6 July Phy e+ 50, 93 •
7833 20 July Phy e− 50, 93 •
7835 20 July Phy e− 50, 93 •
7929 26 July Pol e− 41 (P), 50 •
7931 26 July Phy e+ 50, 93 • •
8221 21 Aug Phy e+ 50, 90 •
8224 21 Aug Phy e+ 50, 90 •
8368 4 Sept Pol e− 41 (P), 50 (P), 55 (P), 61, 90 • •
8443 10 Sept Pol e+ 50, 60, 70, 80, 90 • •
8444 10 Sept Pol e+ 50, 60, 70, 80, 90 • •
8556 25 Sept Pol e− 45 (P), 50 (P), 55 (P), 93 • •
8559 25 Sept Pol e+ 50, 90 •
8566 26 Sept Phy e− 50, 97 • •

Table 10: Fills from the 2000 run used in the spectrometer analysis, indicating date, optics,
particle type and energy points considered. In the ‘Eb of measurements’ column ‘ (P)’ signifies
that the energy was calibrated with RDP. ‘ Interest of experiment’ indicates which of the datasets
the fill belongs in: high-energy data set (‘HE’ ), low-energy data set (‘LE’ ), or BFS calibration
(‘BFS’ ).

Quantity Low energy High energy

Mean RMS Mean RMS

Beam-position change in x [µm] -30 190 -57 145

Beam-position change in y [µm] -1 230 -43 184

BPM-block temperature change [◦C] -0.07 0.06 0.16 0.15

BPM-block expansion [µm] -0.65 1.22 1.37 1.33

Dipole-core temperature change [◦C] 0.71 0.58 3.45 1.24

Table 11: Stability of key parameters in the spectrometer data set. The values refer to the change
in parameter value between lowest and highest energy point considered. The BPM quantities
are calculated by taking the station with the maximum excursion in each experiment.
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Figure 27: BPM triplet residuals for fill 8443. The gains have been calibrated and the triplet
residuals centred at 50 GeV. Good resolution is observed at the other energy points, but accom-
panied by residual shifts. The inset numbers indicate the means of the distributions.

The exact origin of the TRS is not well understood. They are not correlated to temperature
or to bunch current and have no dependence on particle type. The distribution in figure 28 (b)
suggests a cause which varies approximately linearly with energy, thus disfavouring synchrotron
radiation, and one which is more extreme for the polarisation optics. Variables which fulfil these
criteria are the bunch size and length, which for the physics optics are similar between 50 GeV
and high energy because of the routine use of wigglers, but in the case of the polarisation optics
steadily increase. In dedicated experiments at a fixed energy TRS were indeed seen when
wigglers were used to manipulate the beam parameters. BPM misalignments and the beam-size
dependence discussed in section 7.3.4 might be one mechanism for the effect, but this is not
proven. In the following analysis, the redundancy provided by the triplet of BPMs on either
side of the spectrometer is exploited to make an internal calibration of the dataset, thereby
minimising any biases brought about by the TRS in the energy determination.
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Figure 28: Characteristics of the triplet-residual shifts: (a) shows the TRS in the left and right
arms for the high-energy sample; (b) shows the mean TRS averaged over both arms (〈TRS〉),
referenced to 50 GeV (asterix), as a function of energy, for the full multi-point dataset. The full
points represent the polarisation optics and the open points the physics optics.

8.3 Analysis of the High-Energy Data

8.3.1 Procedure, and the Sensitivity of the Spectrometer to ENMR
b

The energy model is used to calculate the mean beam energies at 50 GeV and the high-energy
point. For each fill, the spectrometer is referenced to the model estimate at 50 GeV after apply-
ing a small correction to account for the known difference to the true energy seen in figure 2.
The change of bending angle and integrated magnetic field is then used to determine Eb at high
energy, and compared back to the model prediction, according to expression 16. When relating
the mean beam energy to that determined at the spectrometer, sawtooth corrections are applied.

The procedure of normalising the spectrometer measurement to a reference energy means
that in expression 16 the relative difference between the spectrometer and the model estimate,
EMOD

b , is insensitive to any uncertainties which scale with energy. This dependence is the
case for all significant model contributions detailed in section 4 which are relevant in these
measurements. To a very good approximation, therefore, it is non-linear systematics in ENMR

b

alone which the spectrometer is constraining. For this reason, in the following the spectrometer
results are compared with ENMR

b .

8.3.2 Survey of the Raw Spectrometer Estimates

The bending angle and changes thereof can be constructed from any combination of two BPMs
in one spectrometer arm, and two BPMs in the other, giving nine such possibilities in total, each
able to provide a separate determination of the energy. These determinations are not identical
because of the TRS . Figure 29 shows the difference between the spectrometer and NMR model
for all fills in the high-energy sample, where for each a spread is indicated, which corresponds to
the variation from the different BPM combinations. This spread takes values between ±16 MeV
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Figure 29: Spectrometer results compared with the NMR model at high energy. For each mea-
surement a spread is indicated showing the variation coming from the choice of 9 possible
BPM combinations (‘Full range’ ), of which 3 specific cases are indicated (‘Outers’ , ‘ Inners’
and ‘Span’ , defined as in figure 30).

and ±59 MeV. Of these nine combinations, three can be defined of particular interest:

• Outers – formed from the two outermost BPMs (6 & 5 together with 2 & 3);

• Inners – formed from the two innermost BPMs (5 & 4 together with 1 & 2);

• Span – formed by excluding the middlemost BPM (6 & 4 together with 1 & 3).

These combinations are illustrated in figure 30.
The energy determinations with each of these combinations are indicated in figure 29. It

can be seen that in almost all cases the Outers give the lowest energy estimate of the possible
combinations, and the Inners the highest, with the Span defining the median value. There are
two exceptions: fill 8224 where the ‘ Inner-Span-Outer’ hierarchy is inverted, and fill 7835
where other combinations give a much wider variation in result. These two fills have a large
positive TRS in one arm and are anomalous within the sample. One other fill, 7251, exhibits
a small positive TRS in one arm, but one which is countered by a more significant negative
shift in the other arm. Fills 7835 and 8224 are dropped from further consideration at this stage,
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Figure 30: A schematic illustrating the three choices of BPM combinations used for determining
the bending angle in the spectrometer energy analysis.

leaving a sample of 15 measurements sharing a common systematic behaviour. The nominal
value of Eb at high energy for this sample is 92.3 GeV, averaged over the measurements.

The results in figure 29 are divided into electron and positron fills. There is an indication
that the positron fills give a higher energy estimate than the electron fills, with a difference in the
raw means of 36 MeV. Although Eb, when averaged around the ring, must be the same within
a few MeV for electrons and positrons, it is unsurprising that larger differences are seen in the
spectrometer analysis. The RF sawtooth is anti-correlated between the two particle types, and so
any residual error in calculating the correction will result in a separation between electrons and
positrons of approximately twice this amount. Conversely, the mean value of the two samples
will give a result which is rather robust against imprecisions in the sawtooth modelling.

8.3.3 Extracting Eb from a Global Fit

A priori it is not known which combination of BPMs gives the most reliable estimate of Eb

as the TRS only indicate relative effective motion between the blocks. This question is best
answered by studying the full ensemble of measurements. By considering the variation in
results for the difference in spectrometer and energy model as a function of 〈TRS〉, the BPM
combination which gives the best stability can be identified. In addition an extrapolation can be
attempted to the limit of zero systematic effect.

Figure 31 shows the spectrometer result, as compared to the NMR model, plotted against
〈TRS〉. The plot is made separately for the Outers, Inners and Span results. Prior to plotting
a correction has been made to minimize the difference between the electron and positron pop-
ulations. This correction is one of three parameters (‘sawtooth’ ) in a least-squared fit made
between the spectrometer results and 〈TRS〉:

1. Offset – the extrapolated value of (E SPEC
b − ENMR

b )/ENMR
b at 〈TRS〉=0;
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BPM Fit parameters Choice of input data

comb Standard Pol optics Phy optics Early data Late data

Offset −5.4 ± 14.9 13.7 ± 25.1 0.8 ± 22.1 −15.6 ± 19.9 4.7 ± 42.2

Outers Slope 27.1 ± 5.6 32.2 ± 8.4 30.5 ± 9.5 24.3 ± 7.9 29.3 ± 16.6

Sawtooth 14.1 ± 4.1 22.9 ± 6.0 6.1 ± 6.1 16.1 ± 6.7 12.7 ± 10.2

Offset −5.1 ± 14.9 13.9 ± 25.1 −0.2 ± 22.1 −13.1 ± 19.9 4.4 ± 42.2

Inners Slope 0.7 ± 5.6 5.9 ± 8.4 3.5 ± 9.5 −1.4 ± 7.9 3.0 ± 16.6

Sawtooth 13.3 ± 4.1 21.7 ± 6.0 5.7 ± 6.1 14.7 ± 6.7 12.5 ± 10.2

Offset −5.5 ± 14.9 13.4 ± 25.1 0.3 ± 21.6 −14.8 ± 19.9 4.1 ± 42.2

Span Slope 13.9 ± 5.6 19.0 ± 8.4 16.9 ± 9.4 11.4 ± 7.9 15.9 ± 16.6

Sawtooth 13.7 ± 4.1 22.5 ± 6.0 5.6 ± 6.0 15.4 ± 6.7 12.5 ± 10.2

Table 12: Results of the global fit to the high-energy data. Results are given for the standard
sample, and four example sub-sets. The units are as follows: Slope [µm−1 × 10−5], Offset
[×10−5] and Sawtooth [MeV].

2. Slope – the gradient of (E SPEC
b − ENMR

b )/ENMR
b with respect to 〈TRS〉;

3. Sawtooth – the correction added to the electron results, and subtracted from the positron
results, in order to compensate for residual errors in the sawtooth model.

The fit is made separately for each BPM combination. In the fit each spectrometer measurement
is assigned a relative error of 17 × 10−5, which gives a χ2/p.d.f. of 1.06, 0.98 and 1.01 for the
Outers, Inners and Span fits respectively. The fit results are superimposed in figure 31 and listed
in the ‘Standard’ column of table 12.
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Figure 31: Spectrometer results at high energy as a function of 〈TRS〉, for different BPM
combinations. The results of the fits described in the text are superimposed (solid line).

It can be seen that, within the assigned errors, the energy estimate coming from the Inners
shows no evidence of a significant dependence on 〈TRS〉. The result from the Outers, on the
other hand, shows a pronounced slope. The result from the Span fit lies between these two
extremes. These fits suggest that there is little relative effective motion between the innermost
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pairs of BPMs, and it is the outermost BPMs in each arm, BPMs 6 and 3, which exhibit insta-
bility with respect to the other four. A calculation made under the hypothesis that all effective
motion occurs in BPMs 6 and 3 predicts slope values of 26.9, 0 and 13.3 × 10−5 µm−1 for the
Outers, Inners and Span respectively, in very good agreement with the fit results to the data.

The fitted value of the offset in the global fit determines the spectrometer energy in the
absence of TRS bias. It can be seen that all three of the combinations considered converge on
the same value. The value corresponds to an offset of −5 ± 14 MeV with respect to the NMR
model at a nominal energy of 92.3 GeV.

The returned value for the correction to the sawtooth model is 14 MeV, which is compatible
with the 10 MeV uncertainty on the model estimated in section 5.1.

8.3.4 Robustness Studies

In order to probe the homogeneity of the dataset, and to cross-check the reliability of the errors
coming from the global fit, the fit is repeated on various sub-samples of the data, namely:

• Division between polarisation and physics optics;

• Division between the first and second halves of the run;

• Samples with each of the 15 fills dropped in turn;

• Inclusion of the two anomalous fills 7835 and 8224;

• Division according to whether the TRS were more significant in the left or the right arms;

• Division into samples according to how well the beam was re-centred between energies,
and according to the position of the beam orbits at the spectrometer;

• Excluding those fills common to the low-energy sample analysed in section 8.4;

• Excluding those fills with the largest fit residuals.

The results from several of these studies are given in table 12. The full variation of the key
parameters are histogrammed in figure 32. The observed fluctuations are well-behaved, with the
RMS of the offset distribution found to be 12.6 × 10−5. The largest deviations come from the
smallest sub-samples, and are always within 1–2 sigma in uncorrelated error. The consistency
between results from different BPM combinations remains good in all cases.

8.4 Analysis of the Low-Energy Data

The low-energy sample is important as it both allows the spectrometer’s performance to be
evaluated in a regime where the energy is well known, and also provides an independent dataset
in which to study the BPM behaviour and TRS characteristics.

Spectrometer energies are calculated as in the high-energy analysis for all data in the 41–
61 GeV range listed in table 10. In fills with two low-energy points Eref

b is set at 50 GeV; in
fills with three or more points the reference is chosen to be as close as possible to the mid-point
of the full TRS excursion seen over the low-energy interval in that fill. Where available, the
true energy is defined by actual RDP measurements; otherwise the energy model is used. As
apparent in figure 2, there are residuals of 2–3 MeV between the fitted model and the energies
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Figure 32: Variations in the fit result for the offset and the slopes for the inner and outer BPM
combinations calculated from various combinations of fills in the high-energy sample. Each
entry corresponds to a distinct subset, varying in size between 7 and 17 fills.

as measured by RDP in the 41–61 GeV regime. Corrections are applied for these differences so
that a comparison can be made between the spectrometer and the best possible estimate of the
true energy, E TRUE

b .
The fractional differences between the energy estimate from the spectrometer and the true

energy are fitted against 〈TRS〉. For this sample only two parameters are considered:

1. Offset – the value of (E SPEC
b − E TRUE

b )/E TRUE
b at 〈TRS〉=0;

2. Slope – the gradient of (E SPEC
b − E TRUE

b )/E TRUE
b with respect to 〈TRS〉.

As the low-energy sample is dominated by electron fills it is not possible to fit a correction
to the sawtooth model. At low energy the sawtooth correction is significantly smaller, and
consequently the expected precision of the RF model is much better. All data are included in
the fit with their sawtooth correction fixed to that of the model. The mean residual of the two
positron points is very close to zero, indicating that indeed there is no significant problem with
the understanding of the sawtooth at these energies.

The data points and superimposed fit are shown in figure 33, and the results listed in table 13.
The χ2/p.d.f of the fits are 1.10, 0.96 and 0.99 for Outers, Inners and Span respectively. These
have been obtained by arbitrarily assigning an error to each point of 12 × 10−5, a smaller
value than was required in the fit of section 8.3.3. This difference may be due to the increased
significance of uncorrelated fill-to-fill imperfections in the sawtooth model at high energy.
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Figure 33: Spectrometer results at low energy as a function of 〈TRS〉, for different BPM com-
binations. Common symbols are used to designate measurements in the same fill. The results
of the fits described in the text are superimposed (solid line).

BPM comb Fit parameters Result

Outers Offset [×10−5] 5.6 ± 3.4

Slope [µm−1 × 10−5] 21.5 ± 2.9

Inners Offset [×10−5] 6.1 ± 3.4

Slope [µm−1 × 10−5] −4.2 ± 2.9

Span Offset [×10−5] 5.9 ± 3.4

Slope [µm−1 × 10−5] 8.8 ± 2.9

Table 13: Results of the global fit to the low-energy data.

The slope values returned by the fit agree with those obtained at high energy. This shows
that the same systematic behaviour is present in the two regimes, and that the low-energy sample
can be used to assess the performance of the spectrometer at high energy.

The offset quantifies the agreement between the spectrometer estimate and the true energy
when the TRS have been accounted for. This is found to be non-zero at a significance of almost
two statistical sigma, suggesting a possible bias in the energy reconstruction of 3-4 MeV. No
evidence is observed for an energy dependence in this offset. The bias, if real, is not understood;
therefore a conservative error assignment is favoured over using the result to correct the high-
energy fits.

The robustness of the result has been explored by isolating distinct sub-samples of points
within the dataset, applying similar criteria to those used in section 8.3.4, and repeating the
global fit. Distributions of the spread of results are shown in figure 34. Further investigations
have been made varying the choice of reference point, the gains assumed in the BPM analysis,
the RF sawtooth model and the value of the integrated dipole fields. From all of these studies
it is concluded that the spectrometer correctly measures the relative energy change in the low-
energy sample within a tolerance of 10 × 10−5. This uncertainty also encompasses the value of
the fitted offset, plus one sigma.
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Figure 34: Variations in the fit result for the offset and the slopes for the inner and outer BPM
combinations from various combinations of fills in the low-energy sample. Each entry corre-
sponds to a distinct subset, varying in size between 4 and 13 energy points.

8.5 Systematic Error Assignment

8.5.1 Global Fit Results

The global fit offset result of −5× 10−5 at high energy provides the central value of the relative
spectrometer energy determination with respect to the NMR model, a result which is the same
for all BPM combinations considered, as is seen in table 12. The accompanying error from the
fit of 15 × 10−5 is taken as the uncertainty associated with the scatter of the measurements.

The studies at low energy, presented in section 8.4, show a systematic behaviour fully com-
patible with that observed at high energy. The low-energy fit, however, suggests a possible
small offset of the spectrometer measurements with respect to the true energy. On considera-
tion of this, and the variations in this offset under different fit strategies, an error of 10 × 10−5

is assigned to represent the validity of the spectrometer performance as cross-checked in the
41–61 GeV regime.

8.5.2 Beam Size and BPM Non-Linearities

As discussed in section 7.3.4, the measured beam position, as conventionally calculated from
the electrode signals of a BPM, ignores higher-order effects which introduce a potential system-
atic uncertainty into the spectrometer measurement. Contributions come from both the finite
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transverse beam size and from non-linear dependencies.
The variation in beam size has been calculated as a function of optics, longitudinal position

in the spectrometer, and energy. The mean transverse offsets of the beam from the BPM centres,
as estimated from consideration of the beam orbits of the measurements, and knowledge of the
BPM alignments within the spectrometer, are found to be less than 1 mm. A simulation of
the BPM response is then used to determine the change in apparent positions, and thus beam
angle, with the variation in beam size for the measurements. From this study a relative error of
4 × 10−5 is assigned to the global energy determination.

As is seen in table 11, the beam was reliably re-positioned between low and high-energy
measurements, with a spread of less than 200 µm. This is sufficient to render non-linear effects
negligible.

8.5.3 Knowledge of the BPM Gains

The dataset has been reanalysed changing the assumed scale of the BPM gains by ±5%, and
the global fit repeated. Variations of 0.5 × 10−5 are seen in the result. This weak dependence
on the knowledge of the gains is a consequence of the care taken at high energy to re-steer the
beam close to its low-energy position.

8.5.4 Knowledge of the Dipole Bending Field

The standard analysis is based on values of the integrated bending field derived from a model
fitted to the data of the post-LEP mapping campaign. The analysis has been repeated using
the model based on the pre-installation campaign data. This results in a change of the offset of
+1.5×10−5. Other models considered, relying on different fit strategies, and alternative magnet
temperature corrections, give smaller variations. The difference between the pre-installation and
post-LEP based results is taken as the error arising from bending field uncertainties.

8.5.5 Knowledge of the RF Sawtooth

At high energy the sawtooth correction is an important input in relating spectrometer measure-
ments to the NMR model. The division of the dataset into nearly equal numbers of e− and e+

fills, and the high degree of anti-correlation of the correction between the two particle types,
enables the validity of the sawtooth model to be assessed, and in turn ensures that the energy
determination from the global fit is largely insensitive to model imperfections.

Results have been obtained using both sawtooth models described in section 5.1, and using
alternative tunings of each model. From these studies an uncertainty of 5 × 10−5 is assigned.

8.5.6 Uncertainty in Corrections to the Bending Angle Calculation

Prior to the calculation of the bending angle, corrections were applied from the WPS system to
account for movements in the BPM-blocks. A further correction was applied for the effect of
the ambient magnetic field on the beam trajectory. As part of the systematic error analysis these
corrections are removed in turn, and the global fit is repeated. The results are shown in table 14.

The fit error in both cases is different from that coming from the standard treatment. This
is because the corrections move both the energies and the values of 〈TRS〉 for each fill. For
individual measurements the effect of the ambient field correction is larger than is apparent
from this table. For results determined with the Outers and the polarisation optics, for instance,
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BPM Fit parameters BPM correction dropped

comb WPS movements Ambient field

Offset −14.5 ± 10.5 −10.1 ± 17.6

Outers Slope 23.6 ± 4.0 32.2 ± 5.4

Sawtooth 14.6 ± 4.1 14.1 ± 4.1

Offset −14.0 ± 10.5 −13.2 ± 17.6

Inners Slope −2.7 ± 4.0 1.8 ± 5.4

Sawtooth 14.2 ± 4.1 13.6 ± 4.1

Offset −14.1 ± 10.5 −13.4 ± 17.6

Span Slope 10.5 ± 4.0 13.7 ± 5.4

Sawtooth 14.3 ± 4.1 13.7 ± 4.1

Table 14: Results of the global fit to the high-energy data with each of the two corrections to the
BPM readings removed in turn. The units are as follows: Offset [×10−5], Slope [µm−1 ×10−5]
and Sawtooth [MeV]. The results should be compared to the ‘Standard’ column in table 12.

the correction is ∼ 25 × 10−5. However, a correlated correction is made at the same time to
〈TRS〉, in such a manner that the resulting variation in the global fit results is much smaller.
With no ambient-field correction, the consistency in the offset result for the different BPM
combinations is degraded.

Following the discussion in sections 7.2 and 7.4, systematic errors corresponding to 10%
and 25% of the full shift are assigned for the ambient-field and WPS corrections respectively.

8.6 Spectrometer Result at High Energy

The component uncertainties in the energy determination using the spectrometer are sum-
marised in table 15, together with the total, under the assumption that the contributions are
uncorrelated.

The spectrometer measures the following offset with respect to the NMR model at a nominal
Eb of 92.3 GeV:

(E SPEC
b − ENMR

b ) 92GeV = −4.9 ± 17.8 MeV.

8.7 Spectrometer Data at Intermediate Energies and in 1999

Table 10 lists four fills with spectrometer data taken at a nominal energy of 70 GeV. These may
be analysed to provide a spectrometer result in this intermediate energy regime.

The sample of 70 GeV fills is too small to allow an independent study of the TRS behaviour.
Instead, any systematic bias is corrected for using the slope results of the standard fit to the
high-energy data. In fact, as can be observed from figure 28 (b), the 〈TRS〉 evolution between
50 GeV and 70 GeV is rather small. Furthermore, in two of the fills, data at 60 GeV are used to
define the reference point, as this choice further suppresses the TRS systematic.

The four fills give consistent results and are therefore combined to give a mean energy
determination from the spectrometer at 70 GeV. The accompanying error from the sawtooth
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Contribution Value

[ ×10−5 ]

High-energy scatter 15.0

Validity at low energy 10.0

Beam size 4.0

BPM gains 0.5

Integrated dipole field 1.5

Sawtooth model 5.0

WPS correction 2.2

Ambient bending field 0.7

Total 19.3

Table 15: Summary of the error contributions to the spectrometer determination of the relative
difference of Eb with respect to the energy model.

model is assigned to be half of the value of the applied correction. The other components
in the uncertainty are estimated as for the high-energy data. The resulting offset between the
spectrometer and the NMR model is found to be:

(E SPEC
b −ENMR

b ) 70GeV = −0.6 ± 9.7 MeV.

The correlation with the measurement at 92.3 GeV is dominated by the common uncertainty
arising from the verification of the spectrometer performance in the low-energy sample, and is
estimated to be 75%.

This 70 GeV result is used in section 10, together with the measurement at 92.3 GeV, to
constrain any evolution of non-linearity of the NMR model with energy. The 80 GeV points in
fills 8443 and 8444 have not been analysed because of large TRS systematics and a very high
correlation with the measurements at the other energy points.

During the latter period of the 1999 run, data were taken at low and high energy in order to
commission the spectrometer. The stability of the operating conditions were significantly infe-
rior to 2000. Furthermore, all the experiments were made with an electron beam, not allowing
constraints to be placed on the sawtooth model for this year. For these reasons, no quantitative
results are presented. The comparison of the spectrometer measurements with the true energy
as a function of 〈TRS〉 in figure 35 shows, however, that the behaviour at low energy for each
BPM combination appears to be very compatible with that observed in 2000, although the points
exhibit a larger scatter. Figure 36 indicates that the results at high energy are also consistent.
(Some of these data have positive TRS in one arm, which when averaged with the negative
values in the other arm, lead to smaller values of 〈TRS〉 than in 2000.) This adds confidence
for the 2000 analysis.

8.8 Measurement of the BFS Boost with the Spectrometer

In addition to constraining the magnetic extrapolation, the spectrometer is also used to calibrate
the bending-field spreading (BFS) boost. In both fills 7931 and 8566, after the usual spectrom-
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Figure 35: Spectrometer results in 1999 at low energy as a function of 〈TRS〉, for different
BPM combinations. Common symbols are used to designate measurements in the same fill.
The bold lines show the results of linear fits made to the data. Superimposed as dashed lines are
fits to the 2000 data set.
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Figure 36: Spectrometer results in 1999 at high energy as a function of 〈TRS〉, for different
BPM combinations. Superimposed as dashed lines are fits to the 2000 data set.
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Fill Nominal BFS Measured BFS

7931 219 MeV 213.5 ± 7.8 MeV

8566 297 MeV 304.1 ± 33.5 MeV

Table 16: Results for the BFS calibration experiments.

eter measurements had been made at high energy, a BFS boost was then applied. This action
induced a noticeable change of bending angle in the spectrometer. In order to minimize BPM-
related systematics, the RF frequency was increased so as to introduce a known energy change
of opposite sign to the BFS, and thereby return the bending angle to close to its original value.
Care was also taken to re-steer the beam back to its position prior to the boost. The residual
change in bending angle is measured, and from this and the change in fRF the effect of the BFS
boost is determined.

The results of the experiments are shown in table 16, giving both the nominal and measured
values of the boost applied. In calculating the systematic error, contributions are considered
from the variation in result with BPM combinations; from a 5% uncertainty in the absolute-gain
scale; through any variation in relative gains seen in the online calibrations within the fill; and
from a 1% error in the momentum compaction factor. Because of time constraints, the beam
was significantly less well re-centred in fill 8566 than in 7931, and this explains the difference
in precision between the experiments. Both measurements, however, show the value of the BFS
boost to be consistent with expectations.

9 Eb Measurement with the Qs Fit

The combined effects of synchrotron radiation loss, and the boost from the RF system, leads
to particles undergoing longitudinal oscillations. The frequency of these oscillations is depen-
dent on the particle energy. An analysis based on measurements of the oscillation frequency,
therefore, offers an alternative way to determine Eb and constrain the energy model.

9.1 Energy Loss and Synchrotron Oscillations

Consider the case of a beam of energy Eb, experiencing an energy loss per turn in the dipole
magnets of U0, as given by expression 3. This energy loss is restored by the RF system, which,
for the purposes of discussion, is taken to be a single cavity as shown in figure 37. 5 The voltage
provided by the cavity to the arriving beam can be expressed as

V (ψ) = VRF sinψ, (21)

where VRF is the peak voltage provided by the system and ψ the phase. The stable phase angle,
ψs, of particles with the nominal energy, is defined by the conditionU0 = e VRF sinψs. Particles
with lower-than-nominal energy follow a shorter path length and, in the ultra-relativistic regime,
arrive at an earlier time in the RF cycle, therefore experiencing a larger energy boost than
particles at ψs. The converse is true for particles with higher than nominal energy. These

5The results quoted, however, are derived under the assumption that the RF voltage is distributed homoge-
neously around the ring.
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Figure 37: Change of orbit length (∆L) for particles with energy deviation (∆E) in an accel-
erator with a single RF cavity (left). Accelerating voltage as a function of phase; particles with
different energies arrive at different phases, thus seeing a voltage different from that needed to
compensate the nominal energy loss per turn (right).

effects lead to synchrotron oscillations of angular frequency Ω. Assuming that the amplitude
of oscillations is small, and the damping due to synchrotron radiation is negligible, it can be
shown [27] that:

Ω2 = ω2
rev

(
αch

2πEb

)
e
dV

dψ
(ψs), (22)

where ωrev is the angular revolution frequency, αc is the momentum compaction factor and h
the harmonic number of the accelerator, that is the ratio between the RF frequency and the
revolution frequency (31320 in the case of LEP).

The synchrotron tune,Qs, is defined as the ratio of the oscillation frequency to the revolution
frequency. Expression 22, together with the definition of the stable phase condition, gives the
following relation:

Q2
s =

(
αch

2πEb

) √
e2 V 2

RF − U2
0 . (23)

In principle, therefore, fitting expression 23 to measurements of the synchrotron tune at
different RF voltages enables the beam energy to be determined. In practice, however, this
expression is inadequate for energy calibrations of the required precision. It neglects energy
losses in the quadrupoles, correctors and from other sources. Further corrections are necessary
to account for the particular distribution of RF cavities at LEP and the possibility of large-
amplitude oscillations. These refinements are discussed in section 9.3.

9.2 Measurement Procedure and Datasets

The determination of theQs was based on a measurement of the phase between a bunch and the
RF frequency. Figure 38 shows a block diagram of the LEP bunch phase monitoring system.
The summed signal from a four-button BPM was processed with band pass filters centred at the
RF frequency, amplifiers and an automatic gain control (AGC) loop. The phase of the resulting
signal was compared to the RF frequency (mixer), and the output fed into a spectrum analyser.
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The Qs peak in the resulting Fourier-analysed spectrum was located manually 6 with a typical
accuracy of 0.0003. In general, the signal was averaged over several turns and over all bunches.

∑

RF in

Phase
adjustment
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e+ e-
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Analogue RF
Band pass

switch

filter (f      )

Figure 38: A schematic block diagram of the LEP synchrotron oscillation detector.

In a Qs energy calibration experiment, measurements were first made at one or more low-
energy points, before ramping to high energy. The purpose of the low-energy measurements
was to enable the absolute scale of the RF voltage to be fixed through cross-calibration against
the energy model in a regime where the model is known to be reliable. At each energy point
the total RF voltage, VRF, was varied over the same range, stepping between the lowest value
compatible with stable operation at high energy, to the maximum available. The need to span a
significant range in VRF dictated that the choice of high-energy point, most usually 80 GeV, was
typically somewhat lower than that attainable by the full RF system during physics operation.
At each value of VRF the synchrotron tune was measured. Data from a typical Qs experiment
are shown in figure 39.

Energy calibration experiments using Qs were made in 1998, 1999 and 2000 and are listed
in table 17. In total six fills were used to measure Eb at high energy. Other fills were used
to constrain uncertainties in the higher order corrections to the model. All but one of these
were made with single beams of positrons. (Fill 5128 was made with positrons and electrons
simultaneously.) The choice of optics was 102/90 for all experiments apart from 8445, which
was performed with 101/45. The bunch currents were set low, with typical values of 50µA, so
as to minimise the parasitic mode energy loss discussed in section 9.3.2.

9.3 The Improved Synchrotron Oscillation Model

9.3.1 RF Calibration and Distribution

The effective voltage seen by the beam can be significantly different from the sum of all indi-
vidual nominal cavity voltages due to uncertainties in the voltage calibration, phasing errors,

6During LEP 1 operation an automatic peak finder yielded the Qs data used to help understand the modelling
of the RF system [3]. This proved unreliable during high-energy running.
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Figure 39: Measured Qs is shown against VRF for different beam energies. The calibration set
for the voltage calibration factor is indicated, together with the high-energy data.

and longitudinal alignment errors. A crucial correction to expression 23 is therefore to replace
VRF, the nominal total RF voltage, by g VRF, where g is a factor to account for these effects.

The correction factor is determined separately for each experiment by fitting the final Qs

model (see expression 26) to the low-energy data for different values of g, to find the factor
which results in a beam energy in agreement with the energy model. Care is taken to use
the same configuration of RF cavities and span of voltages at each energy point, so that this
correction factor is applicable to the high-energy point of that experiment. The uncertainty in
g is taken from the scatter in results over the low energy points, and the central value from the
average. The results for each experiment are shown in table 18. g is typically found to be within
a few percent of unity, with an uncertainty of ∼ 0.001.

Expression 23 is derived assuming that the RF voltage is distributed homogeneously around
the accelerator. In LEP, however, the cavities were concentrated in the four straight sections.
Investigations with the MAD program [26] show that Qs has a dependence on this distribution.
This can be seen in figure 40 which showsQs generated for a beam energy of 50 GeV with three
different RF configurations: a typical case with the standard LEP RF distribution, a case where
the same total voltage is concentrated at one point, and the limit of a homogeneous distribution
where the voltage is distributed over the whole ring. The correct distribution can be adequately
modelled by adding in expression 23 a term in V 4

RF, controlled by a weighting coefficient M of
order 10−7. This is illustrated by the superimposed curve in figure 40.

When analysing the data, the value for M is taken from fits to the appropriate MAD simu-
lations. Any residual imperfections in this treatment are absorbed into the voltage calibration
factor.
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Fill Date Eb of measurements [GeV] Interest of experiment

5128 4 Sept ’98 66, 91 Energy calibration

5981 24 July ’99 61 Parasitic mode loss

6114 13 Aug ’99 50, 55, 61, 81 Energy calibration

6338 15 Sept ’99 50, 55, 61, 80 Energy calibration

7456 14 June ’00 42, 45, 48, 50, 55, 61 Bending radius constraint

7832 20 July ’00 61 Parasitic mode loss

8315 29 Aug ’00 50, 55, 61, 80 Energy calibration

8445 10 Sept ’00 50, 55, 61, 65, 80 Energy calibration

8809 18 Oct ’00 50, 55, 61, 65, 80 Energy calibration

Table 17: List of Qs fills, giving the energy points analysed and the main purpose of the exper-
iment.

Fill g

5128 0.9499 ± 0.0006

6114 0.9805 ± 0.0009

6338 1.0006 ± 0.0008

8315 1.0054 ± 0.0009

8445 1.0064 ± 0.0005

8809 1.0030 ± 0.0002

Table 18: Fit results of the voltage calibration factor, g, for the 6 fills used in the Qs energy
measurement.
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Figure 40: Synchrotron tune as a function of total RF voltage as calculated with the MAD
program for different RF configurations. The curve is a fit to the correct RF distribution using
the model of equation 26.

9.3.2 Total Energy Loss

Expressions 3 and 23 assume that the beam energy is fully supplied by the dipole field, and that
all the energy loss arises through synchrotron radiation in the dipoles. As neither assumption is
wholly valid, the total energy loss Uo as used in equation 23 has to be replaced by

Ũ0 =
r Cγ

ρ
(Ed

b)4 +
∑

∆U, (24)

where Ed
b refers to that part of the beam energy defined by the dipoles alone, and

∑
∆U = (∆UEb

+ ∆Uquad) + ∆Uclosed + ∆Uσ + ∆Ucor + ∆UPML,

is the sum of all additional energy loss, which are explained in the following. The factor r
represents a correction to the inverse bending radius, and is discussed separately in section 9.3.3.

Quadrupole Effects

As discussed in section 4, the beam energy as set by the dipole field receives additional contribu-
tions, the most important of which is associated with off-centre trajectories in the quadrupoles.
According to relation 2 the energy loss in the dipoles scales as E2

b B
2, where B represents the

dipole field. Therefore, in expression 24 the familiar energy-to-the-fourth power term is spec-
ified as being associated with the dipole field alone, and a correction ∆UEb

, is added, where
∆UEb

/U0 = 2 (∆Eb/Eb).
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In addition to modifying the beam energy, beam offsets in the quadrupoles will result in
synchrotron radiation in the quadrupoles themselves. For a transverse offset of (x0, y0) this
contribution to the turn-by-turn energy loss, ∆Uquad, goes as E4

b (x2
0 + y2

0). A beam of energy
80 GeV at an offset of 0.5 mm will lose approximately 0.2 keV in each of the 850 quadrupoles.

The net effect of additional contributions to the beam energy, and of synchrotron radiation
in the quadrupoles, has been studied with the MAD program. Figure 41 shows how the relative
energy loss from both sources varies with relative Eb changes induced by beam offsets. As ex-
pected, the dependence exhibits the superposition of a linear term, associated with ∆UEb

, and a
quadratic term, coming from ∆Uquad. The variation at high and low energy is sufficiently sim-
ilar to allow a common parameterisation. This is then included in the Qs model to account for
the offsets caused by fRF manipulations, earth tides, and longer timescale geological distortions,
as tracked by the fRF

c evolution.
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Figure 41: Variation of relative energy loss with relative energy change induced by beam offsets
in the quadrupoles. The results are calculated with MAD for two energy points. A common
parameterisation is superimposed. Note that during operation the relative energy change from
beam offsets is typically ≤ 10−4.

Even when the global effects coming from these sources are subtracted, there remain signif-
icant local offsets from quadrupole to quadrupole, with typical RMS of 0.5 mm. These ‘closed
orbit distortions’ are logged in BPMs close to the defocusing quadrupoles, and can be extrapo-
lated to the focusing quadrupoles with knowledge of the local betatron function. These offsets
are used to calculate the additional energy loss, ∆Uclosed, from all the quadrupoles around the
machine. Note that though fundamentally random in distribution, they contain a residual sys-
tematic component from the variation in horizontal position arising from the RF sawtooth.

A final addition to the energy loss arising from the quadrupoles is ∆Uσ, a contribution
caused by the finite beam size. This is present even for beams which have no offset, and is
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proportional to E4
b (σ2

x + σ2
y), where σx and σy are the horizontal and vertical beam sizes

respectively. MAD is used to calculate the beam size at each quadrupole, so that the energy loss
from this source may also be included.

Other sources of Synchrotron Radiation

Additional energy loss occurs through synchrotron radiation in the corrector dipoles. This con-
tribution, ∆Ucor, is calculated taking as input the RMS scatter in the logged values of the settings
around the ring.

Synchrotron radiation in the sextupole magnets leads to negligible energy loss.

Parasitic Mode Losses

After the synchrotron radiation in the bending dipoles, the so-called parasitic mode losses [28]
are the largest contribution to the total energy loss. These arise from the impedance experienced
by the beam from resistance in the vacuum chamber walls and from resonator-like structures.

For each particle, the energy loss per turn from this source is ∆UPML = 2π e Ibκ|| / ωrev,
where Ib is the beam current, and κ|| the longitudinal loss factor, which in turn depends on the
longitudinal resistive impedance [29]. ∆UPML can be determined from the data by including
the parasitic mode loss in theQs description and fitting the model to the data at low energy over
a range of different beam currents.

Figure 42 shows measurements of Qs as function of RF voltage at an energy of 61 GeV for
two bunch currents of 10 µA and 640 µA for a fill in 1999. The difference in behaviour due to
parasitic mode losses is clearly visible. A simultaneous fit to the data from five different bunch-
current values yields a current dependent energy loss of ∆UPML/Ib = (18.5 ± 2.0) MeV/mA.
This result is confirmed by the analysis of a second experiment, conducted in 2000, which gives
∆UPML/Ib = (20.7 ± 3.1) MeV/mA.

The longitudinal loss factor is expected to have some weak dependence on the bunch length,
which itself varies with Qs. Fits to the experiments with different bunch currents are not sen-
sitive to this variation, due to correlations with other parameters. Therefore in parameterising
the parasitic mode loss in the energy fits for a given dataset, a constant value of ∆UPML/Ib is
assumed, and the approximation taken account of in the error assignment. A dataset-dependent
scaling factor is applied to account for the differences in bunch length with optics setting.

Summary

The additional contributions to the total energy loss and their sum,
∑

∆U , are listed in table 19
for three energy points in a typical experiment. The most important components are the parasitic
mode loss and the beam size. The relative precision on these corrections are estimated to be
±20% and ±10% respectively. When fitting the complete Qs model to the data, a conservative
uncertainty of 0.5 MeV is assigned to

∑
∆U at all energy points.

∑
∆U represents a 0.7×10−3

relative correction to the original energy loss estimates of expression 3 at Eb = 50 GeV, and
0.2 × 10−3 at Eb = 80 GeV.

9.3.3 Correction to the Magnetic Inverse Bending Radius

The value of ρ, the average magnetic bending radius of LEP which determines the energy loss in
expression 2, is taken from a calculation made with the MAD program. This calculation, how-
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Figure 42: Qs as function of total RF voltage for two different bunch currents in fill 7831,
showing the effect of the parasitic mode losses. The curves are individual fits to each dataset.

ever, is based on an imperfect modelling of the dipole fringe fields, and this has consequences
for the energy loss.

The problem is illustrated schematically in figure 43. The magnetic field extends beyond the
ends of each dipole, falling to zero over a distance of the order of a meter. The details of these
fringe fields cannot be modelled properly by MAD. Rather, a constant field with zero fringe
component is assumed for each magnet, with a magnitude tuned to agree with the full field
integral of the real dipoles. The energy loss, however, depends on the integral of the magnetic
field amplitude squared, and so is overestimated by the program. A correction factor, r, is
therefore present in equation 24 to compensate for the MAD approximation.

The correction factor is determined by fitting the Qs model to all 1998 and 1999 datasets,
simultaneously minimising the global χ2 and the spread in the voltage calibration factors ob-
tained for one series of measurements as a function of (1/ρ). The correction is found to be
0.9970 ± 0.0005.

9.3.4 Non-Linear Synchrotron Oscillations in the 2000 Run

During the 2000 run it was only possible to achieve a measurable Qs signal by significantly
increasing the amplitude of the synchrotron oscillations through the application of timing jit-
ter on the RF signal of selected cavities. The expression for the oscillation frequency, equa-
tion 22, is written on the assumption that the amplitude is small. The higher-order correc-
tion to this expression, necessary for the 2000 data, is a term which shifts Qs by an amount
∆Qs = −1/4 ∆ψ2Qs, where ∆ψ is the oscillation amplitude.

When not accounted for, these non-linear effects lead to an apparent energy dependence of
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Energy Loss Mechanism Energy Loss [MeV]

50 GeV 61 GeV 80 GeV

Offsets in quads (∆UEb
+ ∆Uquad) -0.1 -0.3 -0.9

Closed orbit distortions (∆Uclosed) 0.1 0.2 0.6

Beam size (∆Uσ) 0.1 0.3 1.7

Parasitic mode losses (∆UPML) 1.1 1.1 1.0

Correctors (∆Ucor) 0.1 0.1 0.3

Total correction (
∑

∆U) 1.3 1.4 2.7

Table 19: Estimates of the additional energy losses at three energy points for a typical Qs

experiment with bunch currents of around 50 µA.
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Figure 43: Calculation of the magnetic field integral and the integral over the square of the
magnetic field for a realistic magnet (LEP) and the treatment in the MAD program (MAD).
Λ(s) represents the field distribution along the particle trajectory; L0 is the nominal magnet
length; B0 is the peak field value of the realistic magnet; B1 in MAD is set to that value which
yields the field integral required by the nominal beam energy.

the voltage calibration factor. This behaviour was indeed observed in 2000. To correct for this
bias, the parameter δ is included in the model,

Qmeas
s = (1 + δ)Qs, (25)

in order to convert the measured frequency,Qmeas
s , into a quantity appropriate for expression 26.

δ is extracted from a simultaneous fit to all the low-energy data points in the 2000 run and found
to be δ = −0.0049±0.0016. This corresponds to an oscillation amplitude of 1.6 bunch lengths,
which is compatible with what is expected from the excitation.
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Figure 44: Data and fits from fill 8809. Shown are the measurements and fits as a function of
VRF at the five energy points, together with the fit residuals at 50 GeV and 80 GeV.

No evidence is seen of non-linear behaviour in the data of earlier years, and so for the 1998
and 1999 experiments δ is set to zero. An upper bound on the amplitude of natural longitudinal
oscillation comes from streak camera measurements made at LEP 1 [30], which show an am-
plitude of 0.25 bunch lengths. Such an oscillation would introduce a shift of δ = −0.00012. In
the analysis half of this shift is applied, and half attributed as an uncertainty.

9.3.5 The Final Parameterisation

Taking into account all the effects discussed, the relationship between the measured synchrotron
frequency, the RF voltage and the beam energy can be expressed as

Q4
s =

(
αch

2π

)2 {
g2e2V 2

RF

E2
b

+Mg4V 4
RF − 1

E2
b

Ũ2
0

}
, (26)

where Ũ0 is given by equation 24. This model describes the data well, as shown in figure 44.
The increased scatter at 80 GeV arises because the Qs signal is smaller at high energy, and
therefore is measured with less precision than at 50 GeV. When applied to simulation data,
good agreement is obtained between the extracted fit energy and the input energy.

9.4 Fit Results

χ2 fits are made to each of the six high-energy datasets of 1998-2000. The parameters fitted
are the difference between the preferred energy and the value from the model, the additional
contributions to the energy loss (

∑
∆U), and the voltage calibration factor (g).

∑
∆U and g

are constrained around their expected values with the uncertainties discussed in sections 9.3.2
and 9.3.1 respectively. The input uncertainties on the individual Qs measurements are fixed
from the scatter in the fitted residuals.
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As in the case of the spectrometer measurements, the procedure of normalising the analysis
to low-energy reference points means that the fit is only sensitive to non-linear systematics in
ENMR

b , rather than uncertainties elsewhere in the model which scale with energy. Therefore
the fitted differences are designated EQs

b − ENMR
b . These are shown in table 20. In setting the

error, the intrinsic precision on the Qs measurements, and the combined effect of the uncer-
tainty in

∑
∆U and g have roughly equal weight. Table 20 also lists explicit systematic error

contributions from other sources:

• The uncertainties associated with the correction to the inverse bending radius (r) and with
the effect of non-linear synchrotron oscillations (δ) are determined by adjusting each pa-
rameter by its assigned error, and re-evaluating the fits. The error induced by the uncer-
tainty in r is on average 7 MeV, but varies from experiment to experiment. The non-linear
synchrotron oscillation correction introduces an error of ∼ 40 MeV for the 2000 data, but
is negligible for the earlier experiments.

• In the row labelled ‘model imperfections’ an error of 4 MeV is assigned, to account for
the fact that the values for ENMR

b used in the fits come from an energy model with small
differences to that used to calculate the final physics energies. A further contribution
is added to this component for fill 5128, where the low-energy normalisation point, at
66 GeV, is outside the range of comparison between the NMR model and RDP. This
additional error is calculated through a polynomial fit to the ERDP

b − ENMR
b residuals of

figure 2, which gives an negative offset of 7 MeV at this energy. Fills 8445 and 8809 also
include a 65 GeV energy point in the normalisation, but the estimated uncertainty here is
less than 2 MeV, as in both cases three other low-energy points are used in the fit.

• Finally, an estimated uncertainty of 1 % in the momentum compaction factor results in an
error of 2 MeV for each measurement, when propagated through the fit.

Year 1998 1999 2000

Fill 5128 6114 6338 8315 8445 8809

Eb [GeV] 91 80 80 80 80 80

EQs

b − ENMR
b 3 -4 10 -10 -52 -43

Fit error 19 27 28 41 27 17

Bending-radius error 3 12 9 7 4 8

Non-linear oscillation error 1 3 3 45 26 48

Model imperfections 8 4 4 4 4 4

Momentum compaction factor error 2 2 2 2 2 2

Total error 21 30 30 62 38 52

Table 20: Results of the Qs fit for the six experiments of 1998-2000. Given is the difference
between the fitted energy and the NMR model, and the error assignment on this parameter, all
in MeV.

The results in table 20 can be combined to give a single result for the Qs fits. In mak-
ing this combination it is assumed that the bending-radius errors, the non-linear oscillation er-
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rors, the momentum compaction factor errors and the two contributing sub-terms to the model-
imperfection errors are fully correlated between measurements. The fit errors are taken to be
independent, apart from a 2 MeV component in common, which is the estimated contribution
coming from the fully correlated parasitic mode loss uncertainty. Under these assumptions the
Qs fits measure the following offset with respect to the NMR model:

EQs

b − ENMR
b = −2.8 ± 15.8 MeV,

at a nominal Eb of 85.2 GeV. The χ2 of this combination is 2.7 for 5 degrees of freedom.

10 Combined Analysis of the ENMR
b Tests

The flux-loop, the spectrometer and the Qs fits provide three independent tests of the NMR
model. For the flux-loop, the test is made through a direct comparison between the flux-loop
data and NMR model predictions. In the case of both the spectrometer and theQs, fits are made
to the full Eb model. The procedure of normalising the analyses to low energy measurements,
however, give the methods sensitivity to ENMR

b alone, as the other ingredients in the Eb model
are linear with energy and well understood. Each method therefore measures an offset between
the true energy and the NMR prediction at one or more energies, as summarised in table 21. All
measurements are consistent with the NMR model. Under the assumption that all methods are
measuring the same quantity at different values of Eb, the three sets of results may be combined
to give an improved estimate of the offset as a function of energy.

Method Eb [GeV] EMEAS
b −ENMR

b [MeV] Correlation Period

72 −1.7 ± 7.5

Flux-loop → 100 % 1997–2000

106 −6.0 ± 17.6

70 −0.6 ± 9.7

Spectrometer 75% 2000

92.3 −4.9 ± 17.9

Qs vs VRF 85.2 −2.8 ± 15.6 / 1998–2000

Table 21: Summary of results from the tests of the NMR model.

An initial combination of the results in table 21 can be made under the simple assumption
that any non-linearity does not evolve significantly over the Eb span of the LEP 2 datasets.
In performing this average, the 70 GeV spectrometer point is discarded as being outside the
physics regime, the flux-loop results are represented by a single point at Eb =100 GeV and any
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year-to-year variation in the NMR model is neglected. The input values are very consistent
within their assigned errors. The result of this average is −3.5 ± 9.4 MeV.

As the NMR model is normalised to agree with the true energy around 50 GeV, any offset
observed at higher values of Eb must have some energy dependence. Therefore all measure-
ments have been included in a two-parameter fit in order to determine the combined offset with
respect to the NMR model as a function of energy. In order to use the data optimally, the six
Qs measurements, together with their assigned covariances, are entered separately. The range
of flux-loop results are represented by two fully-correlated measurements at 72 GeV and at
106 GeV.

Because of small changes in probe positions, and magnet ageing, the NMR calibration can
vary from year to year. A test of the NMR model is therefore only valid for the year in which
it was performed. In practice however, with the exception of 1996, the year-to-year variation
appears to be very small, with an upper bound given by the entries of table 3. This possible
variation is accommodated in the combination as follows. The model, against which the offset
and slope are fitted, is considered to be that averaged over the years 1997–2000. In order to
account for a possible difference between this mean NMR-model and the year-specific models,
terms of (2 MeV)2 are added to the error matrix for each of the Qs and spectrometer entries,
with full correlations between measurements from the same year. As the flux-loop analysis is
based on data rather evenly distributed throughout 1997–2000, its errors are left unchanged.

The fit returns an offset at Eb = 100 GeV of −1.5± 9.6 MeV and slope with Eb of −0.06±
0.18 MeV/GeV. The offset and accompanying error at the running points of LEP 2 are given
in table 22. The measurements and fit result are shown graphically in figure 45. Because of
correlations in the input data, the central value of the fit in the regime of interest is slightly
higher than would be the case if all the measurements were independent.

Enom
CM [GeV]

161 172 183 189 192 196 200 202 205 207

Eb offset [MeV] -0.4 -0.7 -1.0 -1.2 -1.3 -1.4 -1.5 -1.6 -1.6 -1.7

Error [Mev] 6.1 7.1 8.0 8.6 8.8 9.2 9.5 9.7 10.0 10.2

Table 22: Results of the fit to the mean NMR-model, applied at the LEP 2 energy points. (These
results have been evaluated at the luminosity-weighted energies calculated by the model, rather
than the nominal ECM values displayed.)

The fit has been repeated with various subsets of the input data. These include the flux-loop
and spectrometer alone; the flux-loop andQs alone; the spectrometer andQs alone; the standard
set without the contribution of the single 90 GeVQs measurement; and the standard set without
the 70 GeV spectrometer input. The results and errors, at three illustrative running points, are
shown in table 23, together with the results of the standard fit and the results of the flux-loop
analysis. It can be seen that the three methods have comparable weight and produce similar
results. The combined measurements of the spectrometer and Qs provide a more precise result
than the more indirect method of the flux-loop. The Qs data have significant weight in the fit
even when the single most precise measurement at 90 GeV is excluded. Dropping the 70 GeV
spectrometer fit point from the combination leads to a very small degradation in precision. In
all cases the results support the mean NMR-model over the full range of energies.

To go from the errors on the results of the mean NMR-model to those appropriate for each
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Offset Slope Error [MeV] at Enom
CM of:

Variant [MeV] [MeV/GeV] 161 GeV 200 GeV 207 GeV

FL, Spect and Qs -1.5 -0.06 6.1 9.5 10.2

FL and Spect -5.1 -0.12 8.0 12.4 13.3

FL and Qs -0.1 -0.03 6.9 10.8 11.5

Spect and Qs -0.9 -0.02 11.2 14.5 15.1

FL alone -5.2 -0.13 10.1 15.7 16.8

No 90 GeV Qs -1.8 -0.06 6.4 10.0 10.7

No 70 GeV Spect -1.7 -0.06 6.2 9.6 10.2

Table 23: Fitted offset at 100 GeV and slope with energy, and errors on the offset at three il-
lustrative LEP 2 energy points, for various sub-sets of input data. Also shown are the input
measurements for the flux-loop alone. (Note that the errors have been evaluated at the luminos-
ity weighted energies calculated by the model, rather than the Enom

CM values displayed.)

energy point an uncertainty of 2 MeV is added, in common between the energy points of 1999,
otherwise uncorrelated, to allow for year-to-year variation in the model from changing calibra-
tion coefficients. The value of this component is once more motivated by the typical size of
entries in the bottom row of table 3.

It is known that the change in calibration is much larger between 1996 and the later years,
and so the exact results of the mean model fit are not applicable to the earlier dataset. Never-
theless, the fit demonstrates clearly that the procedure of the NMR model is not subject to any
significant non-linearity. Therefore, for the two 1996 energy points additional contributions of
9.6 MeV and 10.3 MeV are added to the mean model errors, these being the statistical uncer-
tainties on the individual model for this year. The values are derived from the observed RMS
scatters of the 16 individual values of EMOD i

b in expression 6, at collision energies of 161 and
172 GeV respectively.

The errors on EMOD
CM associated with the NMR model for each energy point of LEP 2 are

presented in the first row of entries in table 24. These are twice those values calculated for Eb.

11 Summary of Results and Systematic Uncertainties

11.1 High-Energy Analysis

The results from the combination of the NMR tests as presented in table 22 are corrections
which must be applied to the output, EMOD

CM , of the energy model. The errors on these corrected
values come from considering the errors from the NMR model, including year-to-year varia-
tion, the additional model uncertainties discussed in sections 4 and 5, and the small uncertainty
arising from the RDP measurement itself. These errors are given in table 24 for each nominal
energy point. The dominant component for all years is the NMR model error, apart from in
2000 where the BFS uncertainty is more important. The next largest contribution comes from
the error on the RF sawtooth, which is 8–10 MeV. Table 25 shows the accompanying correla-
tion matrix. For almost all energy points taken after 1996 the correlation is close to 100%. The
correlation between the 2000 errors and those of the earlier years is less because of the BFS.
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Enom
CM [GeV] 161 172 183 189 192 196 200 202 205 207

NMR model 22.8 25.0 16.5 17.6 18.1 18.8 19.5 19.8 20.4 20.7

RDP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

fRF
c 0.0 0.0 5.4 5.6 5.8 5.8 6.0 6.0 0.0 0.0

αc 0.3 0.4 3.5 4.4 4.4 5.2 4.7 3.0 2.3 1.4

∆Eb in fill 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Hcor/BFS 1.6 1.8 3.4 4.6 0.6 1.0 0.2 0.6 28.6 34.4

QFQD 1.4 1.4 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8

RF sawtooth 10.0 10.0 8.0 8.0 8.0 10.0 10.0 10.0 10.0 10.0

e+e− difference 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Dispersion 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Total 25.4 27.4 20.3 21.6 21.6 23.2 23.7 23.7 36.9 41.7

Table 24: Summary of systematic errors on EMOD
CM , in MeV, at all nominal energy points. The

error on the NMR model derives directly from the Eb errors calculated in section 10. The
origin of the other errors are discussed in section 3 (RDP), section 4 (fRF

c , αc, ∆Eb in fill and
Hcor/BFS) and section 5 (RF sawtooth, e+e− difference and dispersion).

Enom
CM [GeV] 161 172 183 189 192 196 200 202 205 207

161 1.00 1.00 0.57 0.56 0.57 0.57 0.58 0.58 0.38 0.34

172 1.00 1.00 0.58 0.57 0.58 0.59 0.59 0.59 0.39 0.35

183 0.57 0.58 1.00 0.94 0.95 0.95 0.95 0.94 0.57 0.51

189 0.56 0.57 0.94 1.00 0.94 0.94 0.94 0.93 0.57 0.50

192 0.57 0.58 0.95 0.94 1.00 1.00 1.00 0.99 0.58 0.52

196 0.57 0.59 0.95 0.94 1.00 1.00 1.00 0.99 0.58 0.52

200 0.58 0.59 0.95 0.94 1.00 1.00 1.00 1.00 0.59 0.52

202 0.58 0.59 0.94 0.93 0.99 0.99 1.00 1.00 0.59 0.53

205 0.38 0.39 0.57 0.57 0.58 0.58 0.59 0.59 1.00 0.99

207 0.34 0.35 0.51 0.50 0.52 0.52 0.52 0.53 0.99 1.00

Table 25: Correlation matrix for errors on EMOD
CM at all nominal energy points.
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11.2 Uncertainty for Z Runs and Lower-Energy Data

The energy model has been used to calculate collision energies for the fills at the Z resonance,
scheduled for the purposes of providing calibration data for the experiments. As the energy
scale of Z running is directly set by RDP, the NMR model is no longer a source of uncertainty.
Most other error sources are also smaller at these energies. An upper bound of 10 MeV can be
assigned as the total error on EMOD

CM for Z operation during the LEP 2 programme.
The uncertainty on EMOD

CM for the 130-136 GeV running in 1997 is conservatively assumed
to be the same as for the higher-energy operation in that year, and so it is set to 20 MeV.

12 Centre-of-mass Energy Spread

The spread in centre-of-mass energy is relevant for evaluating the width of the W boson, which
is about 2 GeV and is measured with the full LEP 2 dataset with a statistical precision of around
70 MeV [1]. The spread of the beam energy, σEb

, varies as E2
b, with an optics-dependent

correction associated with any RF frequency shift. The value of the spread has been calculated
to accompany each energy record distributed to the experiments. In order to obtain the centre-
of-mass energy spread, σECM

, it is necessary to multiply σEb
by

√
2. The luminosity-weighted

values of σECM
are shown in table 26 for each nominal energy point. The decrease in σECM

seen for 202 GeV and above is because of the smaller frequency shifts applied at these running
points.

Enom
CM [GeV] σECM

[MeV]

161 144 ± 7

172 165 ± 8

183 218 ± 11

189 236 ± 12

192 255 ± 13

196 265 ± 13

200 264 ± 13

202 250 ± 12

205 236 ± 24

207 235 ± 24

Table 26: Luminosity-weighted centre-of-mass energy spreads, σECM
.

Measurements of the bunch length at an interaction point, performed with the 1996 and
1997 data, have been used in conjunction with the measured values of Qs to make indirect
determinations of σEb

, as reported in [2]. These results agree well with the calculated values
given to the experiments.

The error on the calculated energy spread in 1996–1999 is estimated to be about 5%, fully
correlated between years. This value is assigned from the differences observed with respect
to the result of the analytic calculation, when a simulation of the photon emission process is
implemented. The error is 10% in 2000, because of additional uncertainties associated with the
BFS. The corresponding uncertainty on the W width is negligible.
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13 Conclusions

The method of energy determination, based on the NMR model calibrated through resonant
depolarisation, has enabled the collision energies to be calculated for all LEP 2 running. Three
independent methods have been used to verify the linearity of this calibration at high energy.
Uncertainties on other ingredients in the energy model have been assigned, benefitting from
the detailed understanding acquired during the LEP 1 Z resonance scans, and from subsequent
measurements. The total uncertainty for each energy point is presented in table 24, and the
corresponding correlation matrix is given in table 25. For the majority of the data, collected
in the 1997-1999 runs, the relative uncertainty is 1.1 − 1.2 × 10−4. For the operation in 2000
this error rises to 2.0 × 10−4 at the highest energies. This increase is driven by the uncertainty
associated with the spreading of the bending field applied in order to raise the maximum beam
energy.

The error induced on MW from the collision energy uncertainty depends on the point-to-
point correlations, the relative statistical uncertainties at these points, and the correlations in the
other systematic errors contributing to MW. With the presently available preliminary results [1]
the error on MW from the collision energy is determined to be around 10 MeV/c2 [31]. This
contribution is small compared with the statistical uncertainty on the MW measurement.
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