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Abstract

Residual vertical dispersion can be a significant performance limitation for the
LEP collider because the associated vertical emittance increase reduces the lumi-
nosity of the machine. To make the search for orbits yielding small vertical emit-
tances fast and deterministic, a simultaneous correction of the closed orbit and the
residual dispersion was implemented at LEP. The principle of the correction and
the resulting performance gains are discussed.
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1 Introduction

In lepton storage rings, small beam sizes at collision points or in insertion devices are required
for highest luminosity or brightness. In colliders, the luminosity L can be expressed as

L =
kbI

2
b

4πe2frevσ∗
xσ

∗
y

, (1)

with kb the number of bunches per beam, Ib the current per bunch, and frev the revolution
frequency. In absence of local coupling, the horizontal and vertical beam sizes at the collision
points σ∗

x and σ∗
y are given by (u = x, y)

(σ∗
u)

2 = (D∗
uσδ)

2 + β∗
uεu , (2)

where D∗
u is the dispersion, σδ the relative energy spread, β∗

u the betatron function, and εu the
beam emittance. In the presence of weak local coupling, the beam size receives an additional
contribution proportional to the emittance of the orthogonal plane and to the coupling factor.
The number of bunches, the betatron functions β∗

x and β∗
y , and the horizontal emittance εx are

given by the machine and optics design. Optimization of the luminosity with those parameters
is possible but limited by other constraints (e.g. the dynamic aperture, momentum aperture,
...). For example, the horizontal beam emittance can be optimized by a proper choice of the
machine optics, a higher phase advance per cell yielding a smaller natural horizontal emittance.
Dynamic aperture requirements may, however, limit the increase of phase advance.

The vertical emittance εy is a powerful parameter for luminosity optimization. Neglecting
beam-beam effects, it can be written approximatively as

εy � εy0 + κεx + rE2(Drms
y )2 , (3)

with E the beam energy and r a numerical coefficient. For an ideal planar storage ring the
vertical r.m.s. dispersion Drms

y and the global coupling κ vanish, and the emittance is given
by εy0, the limit from quantum excitation due to the finite emission angle of synchrotron radi-
ation photons. In general, εy0 is many orders of magnitude smaller than practically achievable
emittances. Residual coupling between the planes and a non-zero vertical dispersion, both due
to unavoidable machine imperfections, lead to a finite vertical beam emittance. The global
coupling parameter κ is a function of ∆Q, the distance of the tunes to the difference coupling
resonance, and can be expressed to a good approximation by

κ =
∆2

g

∆2
g + 2∆2

Q

. (4)

Here ∆g is the width of the stop-band around the coupling resonance where the horizontal and
vertical tunes become “undefined” due to the orientation of the normal modes axes [1, 2]. The
stop-band width or “closest tune approach” can be measured by sweeping the betatron tunes
across each other.

We note that optimization of the vertical emittance is not critical for a machine operated well
above the beam-beam limit where it is determined by the strength of the beam-beam interaction.
This is, for example, the case of LEP when it is operated at beam energy of 45 GeV.
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1.1 LEP operation at high energy

The Large Electron Positron collider LEP is a 26.7 km circumference storage ring [2]. The
two beams circulate in the same vacuum chamber and collide at 4 interaction points. Each
beam consists of 4 equidistant bunches. The 500 beam position monitors installed in LEP
measure the beam position in both planes. 261 horizontal and 312 vertical orbit correctors are
available for orbit steering. At LEP, best performances were traditionally obtained with the
help of so-called golden orbits [3]. Such orbits were found empirically with global and local
orbit corrections and with knobs generating specific patterns of dispersion waves over the ring.
By continuously reusing and improving the corrector settings and steering of the golden orbits,
peak performances are achieved by “natural” selection on the time scale of a few weeks to a
few months. Choosing as target for the orbit correction the flattest possible orbit does not give
good results, even for a well aligned machine and for beam position monitor offsets smaller
than 0.1 mm.

After 7 years of operation at beam energies around 45 GeV, LEP started running above
80 GeV in 1996. At those high energies the beam-beam limit is increased significantly due to
the stronger radiation damping and beam-beam tune shifts above 0.08 have been observed [2, 4].
The beam-beam limit is not reached even at the highest bunch currents. The strong increase
of the horizontal emittance with energy, εx ∝ E2, is compensated by shifting the horizontal
damping partition number from 1.0 to 1.6 and by increasing the horizontal phase advance per
arc cell from 90◦ to 102◦. Though some beam-beam blowup is observed, the vertical emittance
is mainly given by the beam tuning.

Coupling is generated at LEP by misaligned machine elements and by the four large exper-
imental solenoids. At high energy the contribution of the later becomes weaker since κsol ∝
1/E. Imperfections of the solenoid coupling corrections are therefore less critical, but they may
still contribute to local coupling around the collision points. Four pairs of skew quadrupoles
around each of the four collision points are used for coupling correction.

When all solenoids and skew quadrupoles are switched off, the measured stop-band width
is ∆g ≈ 0.02. It is mainly generated by rolled quadrupoles and vertical orbit offsets in the
sextupoles. For a typical vertical closed orbit r.m.s. of 0.6 mm, the orbit offsets in the sextupoles
contribute to the total coupling with ∆g ≈ 0.006. At a beam energy of 100 GeV the stop-band
produced by the four solenoids is ∆g � 0.019. After correction of the coupling, the width of
the stop-band is reduced to ∆g ≤ 0.002. The correction is first performed with the solenoids off
to compensate the machine coupling and in a second step with the solenoids switched on. For
∆g ≤ 0.002 the contribution of coupling to the vertical emittance is negligible for the operating
betatron tunes of Qx = 98.35 and Qy = 96.18, see Fig. 1. The coupling correction is regularly
checked to track variations from orbit changes.

At high energy the vertical r.m.s. dispersion becomes the main ingredient to the vertical
beam emittance and beam size at the collision points because of its strong dependence on en-
ergy, see Eq. (3) [5]. To improve the LEP performance, work on dispersion correction was
started in 1998. Both empirical optimization with dispersion bumps and a deterministic correc-
tion algorithm were studied. Best results were achieved with a deterministic orbit and dispersion
correction scheme developed at SLAC, the so-called dispersion free steering (DFS) [6, 7, 8, 9].
The dispersion free steering scheme implemented for LEP is described, and the impact on the
machine performances is presented.
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Figure 1: Simulated dependence of the vertical emittance εy for LEP as a function of the dis-
tance ∆Q of the tunes from the difference coupling resonance. The beam energy is 100 GeV
and the horizontal emittance is εx = 44 (nm). The LEP working point corresponds to ∆Q = 0.17
with horizontal tune Qx = 98.35 and vertical tune Qy = 96.18.

2 Dispersion Free Steering Principle and Formalism

The principle of dispersion free steering consists of a simultaneous correction of the orbit and
the dispersion using one of the standard orbit correction algorithms. This guarantees that the
beam orbit is flat while at the same time minimizing the residual dispersion.

In most machines the beam position is measured with a set of N beam position monitors
(BPM) which are distributed over the ring. The orbit is corrected with a set of M dipole magnets
(correctors). The beam position at the BPMs can be represented by a vector �u

�u =




u1

u2

...
uN


 , (5)

and the corrector strengths (kicks) by a vector �θ

�θ =




θ1

θ2

...
θM


 . (6)
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A response matrix A (dimensionN×M) is used to describe the relation between corrector kicks
and beam position changes at the monitors. The element Aij of the response matrix corresponds
to the orbit shift at the ith monitor due to a unit kick from the j th corrector.

The task of the orbit correction is to find a set of corrector kicks �θ that satisfy the following
relation :

�u + A�θ = 0 . (7)

In general the number of BPMs (N) and the number of correctors (M) are not identical and
Eq. (7) is either over (N > M) or under (N < M) constrained. In the former and most frequent
case, Eq. (7) can not be solved exactly. Instead, an approximate solution must be found, and
commonly used least square algorithms minimize the quadratic residual

S = ‖�u + A�θ‖2 . (8)

Dispersion free steering is based on the extension of Eq. (7) to include the dispersion at the
BPMs. The extended linear system is

(
(1 − α)�u

α �Du

)
+

(
(1 − α)A

αB

)
�θ = 0 , (9)

where vector �Du (dimension N) represents the dispersion at the BPMs. B is the N × M
dispersion response matrix, its elements Bij giving the dispersion change at the ith monitor due
to a unit kick from the j th corrector. The weight factor α is used to shift from a pure orbit (α =
0) to a pure dispersion correction (α = 1). In general, the optimum closed orbit and dispersion
r.m.s. are not of the same magnitude and α must be adjusted for a given machine. α can, in
principle, be evaluated from the BPM accuracy and resolution. Applied to Eq. (9), a least square
algorithm will minimize

S = (1 − α)2‖�u + A�θ‖2 + α2‖ �Du + B�θ‖2 . (10)

Singular response matrices are a well known problem of orbit corrections. The singularities
are related to redundant correctors, i.e., areas of the machine where the sampling of the orbit is
insufficient. Such situations yield numerically unstable solutions where large kicks are associ-
ated to minor changes in the orbit. A standard cure consists in disabling a subset of correctors
and removing the corresponding lines from the linear systems of Eqs. (7) and (9). Regulariza-
tion can also be obtained by extending Eq. (9) to constrain the size of the kicks,




(1 − α)�u

α �Du

�0


+




(1 − α)A
αB
βI


 �θ = 0 . (11)

Here �0 is a null vector of dimension M , I a unit matrix of dimension M ×M , and β is a kick
weight. The quadratic residual contains now the r.m.s. strength of the corrector kicks,

S = (1 − α)2‖�u + A�θ‖2 + α2‖ �Du + B�θ‖2 + β2‖�θ‖2 , (12)

and large kicks are suppressed since they receive a penalty which can be adjusted with β.
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Various other constraints can be added to the linear system to be solved, for example, to
maintain a constant orbit length or to stabilize the beam at given locations in the ring. Adequate
weight factors can be used to control the importance of such constraints. It is also possible
to correct the machine coupling using a similar scheme. The orbit coupling of horizontal cor-
rector kicks into the vertical plane is then minimized using skew quadrupoles as correcting
elements [10]. To simplify the expressions in the following sections, vector �d and matrix T are
defined as

�d =




(1 − α)�u

α �Du

�0


 , T =




(1 − α)A
αB
βI


 , (13)

with
�d + T�θ = 0 . (14)

2.1 Singular value decomposition and orbit eigenvectors

Dispersion free steering is particularly interesting in conjunction with the Singular Value De-
composition (SVD) algorithm [11, 12], because it allows a simultaneous limitation of the cor-
rector kick strength. The SVD algorithm is a powerful tool to handle singular systems and to
solve them in the least square sense. For M ≥ N the singular value decomposition of matrix T
has the form

T = UWVt = U




w1 0 ... 0
0 w2

... ... 0
0 ... 0 wM


Vt , (15)

where W is a diagonal M×M matrix with non-negative diagonal elements. Vt is the transpose
of the M ×M orthogonal matrix V,

VVt = VtV = I , (16)

while U is an N ×M column-orthogonal matrix

UtU = I . (17)

The vector �ϑ(i), corresponding to the ith column of matrix V,

�ϑ(i) =




V1i

V2i

...
VMi


 , (18)

is an eigenvector with eigenvalue w2
i ≥ 0 of the M ×M symmetric matrix TtT [12, 13],

TtT�ϑ(i) = w2
i
�ϑ(i) . (19)

It follows from Eq. (16) that the M vectors �ϑ(i) form an orthonormal base of the corrector space
since

(�ϑ(i) · �ϑ(j)) = �ϑ(i)t �ϑ(j) = δij . (20)
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Figure 2: Orbit eigenvalue spectrum for LEP in the vertical plane with α = 0.2 and β = 0.
The last 4 eigenvalues correspond to singular solutions in the low-beta sections around the
interaction points.

Each eigenvector �ϑ(i) is a linear combination of the usual physical correctors. The orbit and
dispersion response �υ(i) associated to kick eigenvector �ϑ(i)

�υ(i) = T�ϑ(i) = UWVt�ϑ(i) = wi




U1i

U2i

...
UNi


 (21)

corresponds (modulo a factor wi) to the ith column of matrix U. The M vectors �υ(i) are orthog-
onal but not normalized,

(�υ(i) · �υ(j)) = �υ(i)t �υ(j) = �ϑ(i)t TtT�ϑ(j) = w2
i δij . (22)

The eigenvalues (or weights) wi are a quantitative measure of the orbit and dispersion response
to a given �ϑ(i), since (�υ(i) · �υ(i))1/2 is proportional to the orbit and dispersion r.m.s. associated
to �υ(i). The higher the eigenvalue, the larger is the response. Very small eigenvalues correspond
to singular solutions where combinations of correctors lead to essentially no response on the
measured orbit or dispersion.

Examples of eigenvalue spectra and eigenvectors for LEP are shown in Figs. 2 to 4. By
default, the eigenvalues and eigenvectors are always ordered by decreasing eigenvalue. The
eigenvectors associated to the largest eigenvalues correspond to orbit and dispersion responses
that contain only few and strong harmonics close to the machine tune. Those eigenvectors
are combinations of a large number of small corrector kicks, but their effect on the orbit and
dispersion is large because the kicks add up resonantly due to favorable phase relations, as
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Figure 3: Example of normalized orbit eigenvectors (w1�υ
(i)/wi) for the vertical plane at LEP

with α = 0.2 and β = 0. Only the orbit component of the eigenvector is shown here. The har-
monic content of the first eigenvectors reflects the machine symmetries. The main harmonics
are Q (the machine tune) for eigenvector 1, Q ± 1 for eigenvector 9 and Q ± 4 for eigenvec-
tor 21. The eigenvectors associated to small eigenvalues (bottom right) often correspond to long
“bumps” over some section of the machine.

can be seen in Fig. 4. It can be shown that the harmonics of the eigenvectors with the largest
eigenvalues always reflect the machine (super) symmetries [13]. Such a spectrum of harmonics
is shown for LEP in Fig. 5. For small eigenvalues, the solutions often correspond to orbit and
dispersion bumps over some section of the machine.

2.2 Orbit corrections with eigenvectors

Provided that all wi are nonzero, the SVD decomposition can be used to invert matrix T and
solve Eq. (14),

�θ = −VW−1Ut�d . (23)

For M = N , Eq. (23) is the solution of the linear system, and, for M ≥ N , it is the result of the
least square minimization. Singular elements, corresponding to values of wi that are very small
or zero, can be regularized by setting 1/wi to 0 in matrix W−1.

In practice, the eigenvector decomposition yields a simple way of handling Eq. (23), in
particular, when the orbit is corrected only with the k eigenvectors associated to the largest
eigenvalues [13]. The measured orbit and dispersion vector �dm and the corresponding corrector
settings �θm are decomposed in terms of orbit and kick eigenvectors

Ci = (�dm · �υ(i)) and Cc
i = (�θm · �ϑ(i)) . (24)

8



Monitor No.

y 
(m

m
)

Monitor No.

D
y 

(c
m

)

Corrector No.

θ 
(µ

ra
d)

-4

-2

0

2

4

0 200 400
-2

-1

0

1

2

0 200 400

-0.2

-0.1

0

0.1

0.2

0 50 100 150 200 250 300

Figure 4: Normalized orbit (w1�υ
(9)/w9) and kick (�ϑ(9)) eigenvector for eigenvalue number 9

(see also Fig. 3). The orbit (top left) and dispersion (top right) components of �υ (9) are shown
together with the corrector setting corresponding to �ϑ(9) (bottom).
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Figure 5: Harmonics of the normalized vertical orbit eigenvectors (w1�υ
(i)/wi) for the 50 largest

eigenvalues as a function of the eigenvalue number (ordered by decreasing eigenvalue). The
strength of the harmonics increases from white to black. The vertical integer tune is 96.

9



Number of Eigenvectors

r.
m

.s
.

Dy (cm)

θ (µrad)

y (mm)

0

2

4

6

8

0 100 200 300

Figure 6: Predicted r.m.s. of the vertical orbit (y), dispersion (Dy), and corrector kicks (θ) for a
bare orbit correction as a function of the number of used eigenvectors (for α = 0.2 and β = 0).

The vector �do, defined as

�do =
N∑

i=1

Ci �υ
(i) , (25)

corresponds to the correctable part of the orbit and dispersion. The residual orbit and dispersion
given by �dm − �do cannot be corrected given the correctors that are installed in the machine.
This residual is generated by the corrector density, the BPM errors, and the machine alignment.
A correction based on the k largest eigenvalues corresponds to the following corrector setting
increments :

�θc =
k∑

i=1

−Ci

wi

�ϑ(i) . (26)

For k = N Eqs. (26) and (23) are identical. For a bare orbit correction, where the effect of
already used correctors is first unfolded, the new absolute corrector settings are

�θc =
k∑

i=1

(−Ci

wi
+ Cc

i )
�ϑ(i) . (27)

Figure 6 gives an example of the prediction for orbit, dispersion, and corrector strengths in
the case of a vertical bare orbit correction at LEP. Good corrections for the dispersion and the
orbit are already obtained with approximatively 80 eigenvectors. Since the r.m.s. strength of
the correctors increases smoothly with the number of eigenvalues, the corrector kicks can be
controlled by limiting the number of eigenvectors for the correction.

The SVD algorithm is also suited to identify suspicious monitor readings. Because correc-
tions based only on the largest eigenvalues act principally on the main harmonics of the orbit
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and the dispersion, local structures and particularly suspicious data becomes more visible. The
simultaneous correction of the dispersion is also a protection against spurious local bumps,
since such bumps generate local orbit distortions but global dispersion waves.

2.3 Orbit corrections with MICADO

MICADO [14] is a least square algorithm based on Householder transformations which is
widely used for orbit corrections. It is a fast algorithm which performs an iterative search for
the most effective corrector. MICADO is, together with SVD, one of the most common orbit
correction algorithms. For a non-singular matrix, a MICADO correction with all N correctors
and an SVD correction with all N eigenvectors yield identical solutions. For corrections with
a limited number of correctors or eigenvectors, and for singular matrices, the two algorithms
behave differently.

A major difference between SVD and MICADO is the corrector strength distribution, MI-
CADO using fewer but also much stronger kicks. The corrector strength r.m.s. can be easily
controlled with SVD over the number of eigenvalues that are included in a correction, see Fig. 6.

A correction of a small number of localized kicks is very effectively handled by MICADO,
particularly when the response matrix is accurate, in which case MICADO can be used to
identify the sources of the kicks. On the other hand, corrections based on few eigenvectors
with the largest eigenvalues are similar to corrections of the main harmonics. Such a scheme
spreads out the correction of a few kicks over the whole machine which can be an asset when
the strength of correctors is limited. To compensate an isolated kick locally, a large number
of eigenvectors must be included in the correction such that the linear combination forming �θc

yields a single nonzero corrector.
To correct a large number of small imperfection and misalignments, for example, in the

case of a well aligned machine, the SVD algorithm may provide a more natural solution by
distributing a large number of small kicks over the machine. The concentration of the correction
onto a limited number of correctors by MICADO is very efficient but may not always be natural.

Singularities of the response matrix, associated to very small eigenvalues, are handled more
easily with SVD, since it is sufficient to avoid using the corresponding eigenvectors in the
corrections procedure. There is no need to disable correctors to regularize the response matrix.
A nonzero kick strength weight β can also be used to avoid disabling correctors with MICADO.

3 Experimental Results of Dispersion Free Steering at LEP

Dispersion free steering was tested in 1998 and implemented in the LEP control system for
the 1999 run. The response matrices are evaluated from the machine model with the MAD
program [15]. The large energy loss per turn at high energy (≈ 2%), which affects the response
matrices of the two beams differently, is taken into account. The machine model is accurate
enough to converge extremely well, even when all corrector settings are unfolded in the case of
bare corrections. Corrections can be evaluated for the individual beams, for both beams at the
same time or for the average of the two beams (the most frequent case). Since the size of matrix
T can be as large as ≈ 2300 × 300, the SVD algorithm is not applied directly to matrix T but
to the symmetric N × N matrix TtT of Eq. (19). The eigenvalue problem of Eq. (19) can be
solved by a variety of mathematical algorithms other than SVD, see Ref. [11]. A comparison
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Figure 7: The vertical orbit (y), dispersion (Dy) and corrector kick strengths (θ) after a tradi-
tional bare correction of the LEP orbit using MICADO (i.e. α = 0) are shown on the three top
figures (a), (b) and (c). The same quantities are shown after a correction with the DFS procedure
on the bottom figures (d), (e) and (f). This experiment was performed with a single beam.

of different algorithms confirmed the numerical stability of the results. The optimum value for
α ranges between 0.1 to 0.3 and, in general, α is set to 0.2 (for an orbit r.m.s. expressed in
mm and a dispersion r.m.s. expressed in cm). This value is in agreement with estimates based
on the machine alignment and the accuracy of the dispersion measurement. Results are not
very sensitive to the precise value of α. β is usually set to 0.1 to avoid problems with singular
solutions localized in the low-beta insertions.

3.1 Dispersion correction with single beams

A small vertical dispersion is obtained with DFS using baseline corrections on bare orbit and
dispersion in both planes. Only 80 to 120 eigenvectors are used to limit the r.m.s. kick strengths
to ≈ 5 − 6 µrad. This number matches the typical quadrupole kick of approximatively 6 µrad
due to the vertical r.m.s. quadrupole misalignment of 150 µm, although only 312 out of over
800 quadrupoles are equipped with a nearby vertical orbit corrector. Increasing the number
of eigenvalues does not, in general, improve the performance. DFS corrections based on the
MICADO algorithm yield a good r.m.s. dispersion and orbit but larger emittances and worse
luminosity performance. This observation may indicate that, by using a large number of weak
correctors, the SVD algorithm compensates the closed orbit kicks more locally than MICADO,
which concentrates the correction over fewer correctors.

A traditional bare orbit correction using MICADO (α = 0) is compared to a DFS correc-
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tion with SVD in Fig. 7. While the orbit r.m.s. is not affected significantly, the r.m.s. vertical
dispersion is reduced from typically 5 to 1.0-1.5 cm, which corresponds to the smallest achiev-
able residual r.m.s. dispersion at LEP. For the available momentum range of ∆p/p � 0.15%, a
dispersion of 1 cm corresponds to a measured beam position shift of only 15 µm, at the limit of
the LEP BPM resolution. The r.m.s. kick strength is reduced by almost a factor two.

Once a good orbit is established, the corrector settings are reused in subsequent runs and
the orbit is corrected towards the reference using a few correctors with the MICADO algorithm.
The dispersion is stable over time. Small drifts with respect to the optimum are easily corrected
using DFS with a MICADO correction.

3.2 Dispersion correction with two beams

When LEP is operated above 80 GeV, each beam consists of four equidistant bunches. There
are eight beam encounters along the circumference, but experiments are only installed around
four of the eight collision points. At the four other interaction points the beams are locally
separated in the vertical plane. The separation bumps are made with electrostatic elements and
produce vertical dispersion of opposite sign for the two beams, which can be reduced only
through the design of the separation bumps and the local optics. For the 1999 LEP run the
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Figure 8: Design (left) and measured (right) vertical orbit difference ∆y and dispersion differ-
ence ∆Dy between the e+ and e− beam. The four separation bumps are clearly visible on the
closed orbit difference. The measured r.m.s. orbit difference outside the separation bumps is
0.2 mm. The residual vertical dispersion difference of 3.1 cm is generated by the separation
bumps. This corresponds to a dispersion of 1.5 cm for each beam, but of opposite sign for e+

and e−.
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Figure 9: Average vertical beam emittance in collision for bunch currents of 500 to 550 µA for
each LEP fill in 1998 and 1999. The emittance is extracted from the measured luminosity.

local optics was modified to reduce the r.m.s. dispersion generated by those bumps from 2.5
to 1.5 cm. This guarantees that their contribution to the vertical emittance is negligible. The
smallest r.m.s. dispersion of 1.5 cm obtained during LEP operation in 1999 corresponds to
the minimum originating from the separation bumps. The separation bumps and the resulting
dispersion difference between the beams is shown in Fig. 8.

3.3 Performance improvements

The vertical emittance extracted from the measured luminosity for 1998 and 1999 is shown in
Fig. 9. At LEP the strong beam-beam effect, with values of the beam-beam parameter exceeding
0.08, blows up the vertical beam size and prevents a linear increase of the beam-beam parameter
with bunch current. To avoid strong biases due to beam-beam blow-up, the emittances are
compared for a similar range of bunch currents. The vertical emittance is extracted from the
measured luminosity using the design vertical betatron function at the collision point and the
design horizontal emittance. Measurements of the horizontal beam spots at the collision points
using beam-beam deflection scans [16] indicate that the blow-up in the horizontal plane is small
at the currents that are considered here. From Fig. 9 it is clear that with the help of DFS the
vertical emittance in 1999 was rapidly pushed below the best values of the 1998 run. Contrary
to previous years where the search for good (golden) orbits was done empirically, in 1999 the
baseline performance was established deterministically with DFS. The best emittance values
were reduced by almost a factor 2. They correspond to emittance ratios of 0.6% (εx � 25 nm).
This ratio is often quoted as an indicator for the beam quality, but it is important to note that the
concept of emittance ratio is not adequate for our case since εy is not dominated by coupling.
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Figure 10: Simulated dependence of the vertical emittance εy on the r.m.s. vertical dispersion.
The typical vertical dispersion r.m.s. for 1998 and 1999 are indicated by the 2 bands.

At LEP the emittance ratio can be changed artificially by varying εx and ratios below 0.5% can
be obtained for larger εx.

The dependence of the vertical emittance εy on the r.m.s. vertical dispersion was simulated
with the MAD program and is shown in Fig. 10. εy scales with the square of the r.m.s. ver-
tical dispersion, [see Eq. (3)], albeit with a spread that depends on the details of the orbit and
dispersion pattern. The simulated and measured emittances agree quite well. Since the r.m.s.
dispersion was reduced from 3-4 cm in 1998 down to 1.5-2 cm in 1999 with DFS, an emittance
improvement by a factor four would be expected, while only a factor of two was observed. The
difference may be explained by a larger beam-beam blow-up for smaller εy [17]. It is also pos-
sible that the beam sizes at the interaction points were limited by local coupling between the
two planes, in which case the determination of the emittance from the luminosity overestimates
the true value. Attempts to improve the performance by tuning the local coupling did not yield
important gains.

4 Conclusion

Dispersion free steering, a deterministic and simultaneous correction of the closed orbit and
the dispersion, was implemented in LEP. The correction scheme is relying mainly on the SVD
algorithm to solve the least square problem. The vertical dispersion in LEP was reduced to
the expected minimum, only limited by residual dispersion generated from separation bumps
and by the measurement noise. With DFS the empirical search for golden orbits yielding peak
performance could be be made deterministic and a significantly smaller residual dispersion was
obtained. This resulted in a vertical emittance gain of approximatively 50%.
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