LHC Orbit FB for IR6

J. Wenninger

- Motivations for an orbit feedback @ LHC
- Anticipated orbit changes
- Estimated feedback parameters / limitations / performance
- Conclusion

Orbit Feedback @ LHC : why ?

Some reasons why a real-time orbit feedback is required for the LHC :

- Need good orbit control over whole ring at all stages of operation due to the tight aperture. A well controlled orbit also greatly simplifies operation, in particular during ramp and squeeze.
- Tight orbit tolerances around collimators : fraction of a beam sigma → stabilization to better than 0.1 mm.
- LHC has 2 rings : orbit movements (due to ground motion...) will separate the beams at the IPs → minimize this effect !
- Bad LEP experience : we suffered a lot during ramp & squeeze from the absence of real-time orbit feedback. Large (few mm rms) orbit changes to the un-anticipated movements of the low-beta quadrupoles.

Expected Orbit Perturbations

Effect	Source	RMS orbit change (mm)	Time scale	Reproducible
Ground motion	quads	~ 0.2 - 0.5 (LEP)	5-12 hours	No
Persistent cur. decay	dipoles	~ 0.3	~15 min	~ "YES"
Snapback	dipoles	~ 0.3	~1 min	~ "YES"
Squeeze	IR1,2,5,8 quads	~ 2-10	few mins	~ "YES"

No significant motion (above ~ few μ m) observed at freq. > 0.5 Hz at LEP.

Reproducible effects can be 'anticipated' after a learning period :

 \rightarrow included into the PC functions (snapback, ramp, squeeze).

 \rightarrow reduces the load for the FB.

Orbit Feedback Limitations

Some feedback limits are set by the orbit system sampling rate of 10 Hz.

For a closed loop feedback, the highest frequency of a perturbation that can be well corrected is ~ sampling rate / 20 :

 \rightarrow feedback will only be efficient below ~ 0.5 Hz.

The feedback is also limited by the long time-constants (~ 200 sec) of most of the cold orbit correctors \rightarrow PCs cannot drive them much above ~ 1 Hz.

For the anticipated effects \rightarrow perfectly adequate !

...but we must beware of magnet vibrations inducing orbit movements above 0.5 Hz etc

Design Ideas

Possible work-horse for the LHC : a global orbit feedback.

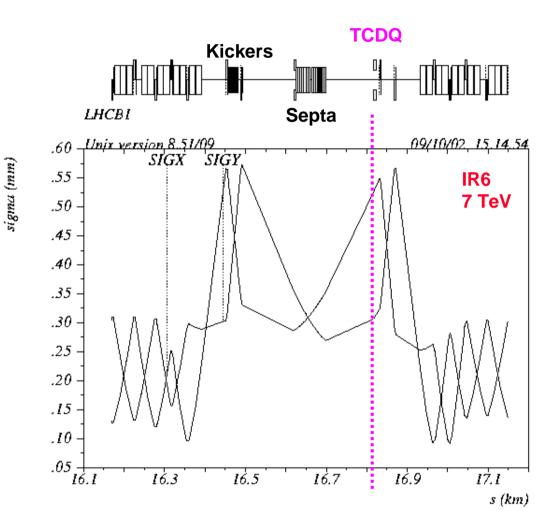
 It can correct the <u>anticipated effects</u> to < 0.2 mm rms over the whole machine, except possibly IR1,2,5,8 (squeeze, more studies required).

 \rightarrow Stabilization of IR6 to < 1 mm is not a problem.

- Little sensitivity to isolated bad/missing BPMs, missing correctors.
- Assuming a 100 ms delay (acquisition, correction algorithm, network, PCs...) the system achieves a gain of ~ 10 at 0.1 Hz, no gain at 1 Hz.
- To improve the orbit at special locations (collimators..) :
 → add a local correction multiple design options.

Note that the FB maintains the orbit around a given reference, but it does not find this optimum reference orbit !

Orbit @ TCDQ Absorber


At the **TCDQ** absorber :

Must stabilize the horizontal orbit to better than

 $\sigma_x/2 \sim 0.2 \text{ mm} \text{ at 7 TeV}$

to ensure a correct distance to the beam for protection.

Tighter than aperture tolerance !

Reliability

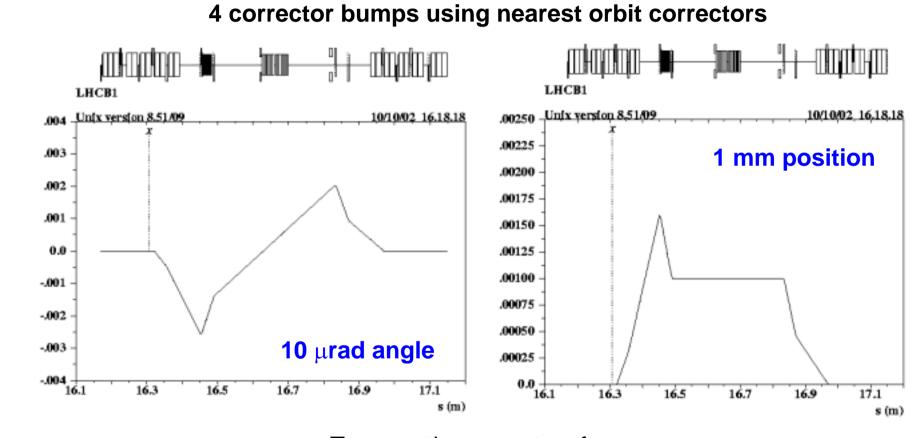
The orbit feedback depends on distributed systems and is **not failsafe** :

- up to 500 orbit monitors per plane and ring.
- up to 300 orbit correctors per plane and ring.
- fast network connections.

→ Its reliability will be limited by those elements (not sensitive to isolated problems !).

Some strategies have to be defined, to be refined with **operational experience** :

- What do we do if we cannot access BPMs around IR6?
- What do we do if the the BPMs around IR6 are "faulty"?
- What do we do if we cannot access orbit correctors around IR6?


• ...

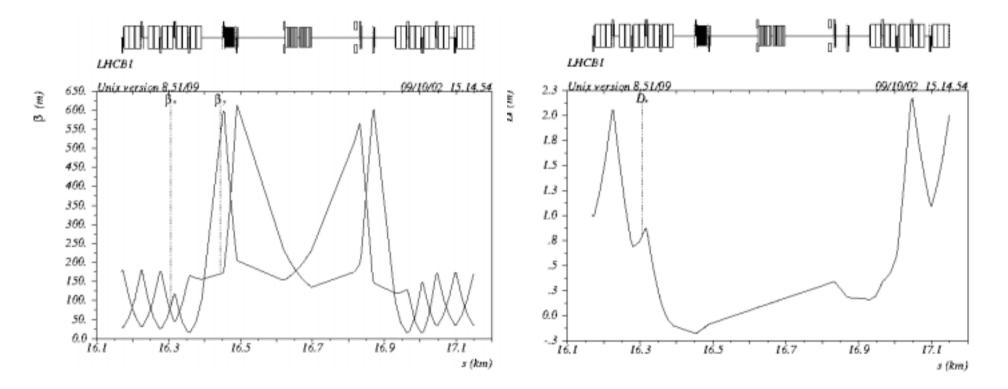
Conclusion

With the orbit feedback :

- the orbit in IR6 can be stabilized to < 1 mm for frequencies < 0.5 Hz during all phases for the anticipated orbit movements.
- the orbit cannot be stabilized in case of failures inducing fast orbit changes on the time scale of few turns or few msec.
- the requirements for the feedback may be even tighter than 1 mm at the TCDQ absorber : ~ 0.2 mm at 7 TeV.
- the orbit FB maintains the orbit around a reference, which must be defined when setting up the whole extraction process in IR6.

Bump shapes @ IR6

To ramp the correctors for a 1 mm /10 μrad bump takes ~ 4 sec @ 7 TeV


x (m)

Orbit Feedback @ Dump / MPWG / J. Wenninger

Optics in IR6

β functions

dispersion

Orbit Feedback @ Dump / MPWG / J. Wenninger