
Dispersion perturbation in a transfer line

The dispersion perturbation in a transfer line is given by

∆D(s) =

∫ s

0

1

ρ(t)

√
β(t)β(s) sin(µ(s)− µ(t))dt (1)

where ρ(s) is the radius of curvature. ρ can be approximated by

ρ =
L

θ
(2)

where θ is the kick and L is the element length.

The dispersion change induced at monitor l by a kick θj corrector j due to
the beam excursion in quadrupole i is:

∆Dl
i = KiLi∆ui

√
βlβi sin(µl − µi)θj (3)

since for a beam with an offset of ∆ui in a quadrupole with strength Ki, ρ
is:

1

ρ
= Ki∆ui (4)

The beam offset ∆ui itself due to the kick is

∆ui =
√

βiβj sin(µi − µj)θj (5)

Putting it all together, the dispersion change at monitor l due to the kick
from corrector j is:

∆Dl =

{∑
i

KiLiβi sin(µl − µi) sin(µi − µj)− sin(µl − µj)

} √
βlβjθj (6)

where the sum runs over all quadrupoles between the corrector and the mon-
itor. The last term is the ’direct’ term from the corrector kick itself.

Note :

• The sign in the last takes into account the fact that the sign definition
for corrector and quadrupole kicks is opposite to the one needed for
the definition of the dispersion (through ρ). This explains the − sign
in the second part of the equation.
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• The equation is valid for the horizontal plane. For the vertical plane a
− sign must be inserted to take into account the strength sign.

Dispersion perturbation in a ring

The dispersion perturbation in a ring is given to first approximation by

∆D(s) =

√
β(s)

2 sin(πQ)

∮ C

0

√
β(t)

ρ(t)
cos(|µ(s)− µ(t)| − πQ)dt (7)

where ρ(s) is the radius of curvature and Q is the tune. This expression does
not include the higher order terms from sextupoles that will be discussed
later.

The dispersion change induced at monitor l by a kick θj corrector j due to
the beam excursion in quadrupole i is:

∆Dl
i = KiLi∆ui

√
βlβi

sin(πQ)
cos(|µl − µi| − πQ)θj (8)

since for a beam with an offset of ∆ui in a quadrupole with strength Ki, ρ
is:

1

ρ
= Ki∆ui (9)

The beam offset ∆ui itself due to the kick is

∆ui =

√
βiβj

sin(πQ)
cos(|µi − µj| − πQ)θj (10)

The sextupoles also contribute to the dispersion to first order in the orbit
perturbation. This is due to the that the the dispersion may be defined as

Du = lim
δ→0

u(δ)− u(0)

δ
(11)

where u(δ) is the closed orbit as a function of the momentum offset δ. The
effect of the sextupoles is proportional to

∝ K2x
2 ∝ K2(x(0) + Dxδ)

2 ∝ K2x(0)2 + 2K2Dxx(0)δ + D2
xδ

2 (12)

and
∝ K2xy ∝ K2(x(0) + Dxδ)y(0) ∝ K2x(0)y(0) + K2Dxy(0)δ (13)
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The effect of the sextupole is obtained by replacing the term Ki in the equa-
tion for the quadrupoles by −K2,iDx,i, see for example the SLAC paper by
R. Z. Liu (SLAC/AP-14, 1984).

Putting it all together, the dispersion change at monitor l due to the kick
from corrector j is:

∆Dl = {
∑

i

KiLiβi

4 sin(πQ)2
cos(|µl − µi| − πQ) cos(|µi − µj| − πQ)

−
∑
m

K2,mDx,mLmβm

4 sin(πQ)2
cos(|µl − µm| − πQ) cos(|µm − µj| − πQ)

−cos(|µl − µj| − πQ)

sin(πQ)
}
√

βlβjθj (14)

where the sums run over all quadrupoles (i) and sextupoles (m). The last
term is the ’direct’ term from the corrector kick itself.

Momentum compaction factor in a ring

The momentum compaction factor αc is given by:

αc =
1

C

∮
Dx(s)ds

ρ(s)
(15)

becomes

αc =
1

C

∑
i

Dx,iθi (16)

where the sum runs over all bending magnets and θi is the deflection at bend
number i.
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