LEP Status and Performance in 2000 R. Assmann, SL/OP for the SL Division #### Outline: - Operational strategy - Overview on luminosity and energy performance - Energy reach - Luminosity performance - Other issues - Further improvements/options - Conclusion # **Operational strategy:** Traditional: 1) Select a working point for beam energy 2) Optimize luminosity production 3) Collect all required luminosity 4) Select a new beam energy ... LEP before 2000: Not more than ~3 energies per year Unscheduled change of beam energy discouraged (e.g. not possible for energy to follow available RF voltage) LEP in 2000: #### Optimize for ultimate discovery reach - Unconstrained number of beam energies - Simultaneous luminosity production at different beam energies up to limit Change discussed and promoted by P. Janot et al... LEP operation and performance in this mode # Understanding the choice of beam energy E: Energy loss U_0 per turn: $$U_0 \propto \frac{E^4}{ ho}$$ For example: At 104 GeV ~ 3% of beam energy lost per turn Limitation: RF voltage to compensate synchrotron radiation losses... Minimal accelerating RF voltage U_{min} required: RF system with N klystrons (simplified): $$U_{\min} > U_0$$ $$U_{\text{DE}} = N \cdot U_k$$ #### Some probability for klystron unavailability (klystron trip rate): - Klystron trips occur mainly on statistical basis (LEP every ~ 20 minutes) - Finite recovery time of 2-3 minutes #### Available RF voltage regularly reduced with 1 or 2 klystrons off... # **Assuming fill at constant energy (traditional strategy):** Energy such that... $U_{min} = (N-2) \cdot U_k$ $U_{min} = (N-1) \cdot U_k$ $U_{min} = N \cdot U_k$ Fill length set by dump ~ 1.5 h ~ 20 min Fill at **highest energy** would be short and efficiency would be very low. Fill length ~ 20 min Overhead per fill ~ 69 min Good efficiency requires: Fill length >> Overhead For high energy LEP in 2000: Ramp beam energy during physics fill with colliding beams #### Typical fill in 2000: 22 GeV *Injection* 102 GeV Set-up, colliding beams, golden orbit, BFS, ... 102.7 GeV *Luminosity production* (2 klystron overhead) 103.4 GeV *Luminosity production* (1 klystron overhead) 104.1 GeV Luminosity production, ended by RF trip Mini-ramps: Used for polarization up to 1994 Revived for high energy Beams ramped in collision with collimators closed Possible due to strong radiation damping # Overview of 2000 performance: (14-Jul-2000) Physics energy as function of RF voltage. Many different values... #### Beam energy versus time: Many physics energies. Usually three energies per fill... ("mini-ramp") #### Delivered luminosity versus beam energy: Raise of beam energy on cost of luminosity production... # Beam current and luminosity per fill: #### Produced luminosity per fill Higher energies with lower beam currents... Higher energies without margin are soon lost with RF trips... #### Nevertheless, luminosity production in 2000 better than in 1998: #### **Energy increase of LEP from 1999 to 2000:** LEP 2000 preparation: 105 GeV (optics, power supplies, etc checked) Gain from 1999 physics to 2000: **101 GeV** → **104.4 GeV** + **3.4 GeV** #### *Improvements:* | Total | + 3.50 GeV | | |--------------------------|------------|-----------| | Bending length | + 0.20 GeV | procedu | | Reduced RF frequency | + 0.70 GeV | procedu | | Less RF margin | + 1.50 GeV | Operation | | Higher RF gradient | + 0.96 GeV | RF syste | | 8 additional Cu RF units | + 0.14 GeV | DE 4 | #### LEP RF system: - Eight additional Cu units installed - Clean-up on reliability (tuner power supplies changed) - Condition to **higher fields** (hardware limit w/o beam) - Active damping of field oscillations - Fast diagnostics of RF trips - Automatic adjustment of "trippy" RF units for mini-ramps - Optimization of **RF voltage ramp** for cryogenics stability #### RF voltage (design and actual): Beam energy follows available RF voltage... #### Improvements: - Install additional RF cavities (8 new CU units in 2000) - Increase accelerating gradient # **Progress with RF conditioning:** Condition to higher fields (to hardware limit without beam). Maximum gradients after 2000 conditioning (Nb/Cu SC units) **Unit number** Average: 7.4 MV/m #### RF stability: - 36/8 klystrons (SC/Cu) - 288/56 cavities (SC/Cu) - 53 kW cooling power (He 4.5K) - ~ **10000** interlocks #### RF trips reduce the available RF voltage: - Equipment failures (a few % of trips) - Running at performance limit (acceptable trip rate) - Mainly field emission (He pressure rise/level) - Arcing in RF distribution system (Statistical processes, fast recovery ~ min) | Trip event | Voltage reduction | Occurancy | |------------------|-------------------|-------------| | 1 klystron loss | 100 MV | ~ 20 min | | 2 klystrons loss | 200 MV | ~ 1-2 hours | | Beam dump | | | $100\,\mathrm{MV} \iff \sim 0.8\,\mathrm{GeV}$ RF voltage Beam energy Energy determined by RF voltage and trip rate **Transient** effects on **RF** voltage: Example: Eff. RF voltage [MV] Effective short-term Vrf following one RF Unit trip Vs. Idc. (100MV) at 103 GeV Loss of one half-unit Total Beam Current [mA] | Total beam current | RF voltage | Lost RF voltage | |--------------------|------------|-----------------| | 0 mA | 3500 MV | - 100 MV | | 2 mA | 3460 MV | - 140 MV | | 4 mA | 3420 MV | - 180 MV | | 6 mA | 3330 MV | - 270 MV | Additional RF voltage reserve for transients required (or lower beam current)... ### Hardware damage in RF system: Empirical limit for total beam current: ~ 5 mA # 1) Damage in waveguides (Transport of RF accelerating fields from klystrons to cavities) Origin: Beam-induced electro-magnetic fields (HOM) Damage: *Heating, deformation, holes* High energy operation of LEP leaves its marks... #### 2) Corrosion of cables in solid Niobium units Beam induced electro-magnetic fields (HOM) are guided out with cables to avoid excessive heating/damage #### Solid Niobium RF units: - 1) Cable feed-through cooled too much - 2) Condensation of water 3) Corrosion 4) Feed-through is destroyed (Hole between insulating vacuum and atmosphere) Fix: Remove cable, plug connector. HOM power stays in... 1-3: All solid Niobium 4: Solid Niobium unit 273. Repair: Requires opening cryostat (can be done in situ?)... 3) Loss of single cavities 3 cavities lost in 2000 # Choice of RF frequency: Damping partition number J_x used to reduce horizontal beam size σ_x : $$\sigma_{x} = \sqrt{\beta_{x} \varepsilon_{x}} \propto \sqrt{\beta_{x} / J_{x}} \cdot D_{x}^{rms} \cdot E$$ Increase with beam energy. Good for luminosity and backgrounds in experiments... J_x controlled with RF frequency f_{RF} . $$\Delta f_{RF} = 0 \text{ Hz}$$ $J_x = 1.00$ $\Delta f_{RF} = 100 \text{ Hz}$ $J_x = 1.55$ $\Delta E_{max} = -0.7 \text{ GeV}$ Pay with reduction of maximum beam energy. In 2000: Keep RF frequency shift small (~ 0-20 Hz). # Increase average bending radius ρ : (BFS) Energy loss U_0 per turn: $$U_0 \propto \frac{E^4}{ ho}$$ With larger ρ a higher beam energy E gives the same energy loss. How to increase bending radius? Bending with length L installed for 2π total bending. Add additional bending length ΔL : Increase of beam energy to get 2π Less bending in original bends Larger bending radius in original bends For LEP: Use horizontal correctors and quadrupoles as additional bends Average bending radius increased by 0.7% 0.4% of total bending from correctors (2/3) and quadrupoles (1/3) Net gain in energy: 0.19 GeV # Dipole correctors and quadrupoles as "bending magnets": Raise of beam energy on cost of luminosity production... Production rate below 1999 value, but better than 1998 (same period) #### Reduced luminosity rate due to trade-off: # Luminosity Factor 4 luminosity # **Energy!** 1 GeV increase of beam energy #### Important trade-offs: Increase J_x for small hor. beam size Increase beam current Run with RF voltage reserve Stable energy for tuning, experiments No fills lost with RF trips Decrease J_x for highest energy reach Decrease beam current (better RF stability) Run without any reserve in RF voltage Energy follows available RF voltage All fills lost with RF trips 1998 1999 **2000** Trying to counteract luminosity reduction, but there are limits... #### **Trade-off reflects in key parameters:** Average length of physics fills 2000: 1.82 h (16-Jun-2000) Overhead per fill (re-cycling, injection, ramping) very important: 1998: 110 min 1999: 93 min 2000: **69 min** ### **Optimization of turn-around time:** | Year | Recover [min] | Filling
[min] | Ramp /
Squeeze
[min] | Adjust [min] | Total
[min] | # fills | |-----------------|---------------|------------------|----------------------------|--------------|----------------|---------| | 1998 | 23.9 | 45.0 | 22.3 | 19.1 | 110.3 | 436 | | 1999 | 22.2 | 30.9 | 23.9 | 15.5 | 92.5 | 653 | | 2000 | 13.1 | 25.4 | 13.8 | 16.6 | 68.9 | 344 | | Diffe-
rence | -9.1 | -5.5 | -10.1 | +1.1 | -23.6 | | Data: 10/4-16/6 | Faster | Less | Twice the | BFS | |-----------|---------|-----------|-----| | degauss, | current | ramp | | | optimize | | speed | | | procedure | | | | Average turn-around time improved by ~ 24 minutes! Typical 2000 turn-around: ~ 45 minutes ### We profit from beam behavior at high energy: # Strong transverse damping $(\tau \sim 1/E^3)$ Reminder: Particles perturbed at time t_0 . E.g. orbit oscillation around closed orbit. Oscillation amplitude reduced by e after the damping time τ . #### Consequences for LEP: - Second beam-beam limit (tails, resonances) is overcome - Higher beam-beam tune shifts with higher beam-beam limit - 1/3 resonance can be jumped - Beams can be ramped in collision #### Vert. beam-beam parameter: Observed in LEP (1994-2000): | _ ع | $r_e \cdot m_e \cdot oldsymbol{eta}_y^* \cdot i_b$ | . ~ | \underline{L} | |-------|--|-----|------------------| | S_y | $2\pi e \cdot f_{rev} \cdot E \cdot \sigma_x \cdot \sigma_y$ | | $\overline{i_b}$ | | Energy
[GeV] | ξ_y (max) per IP | Damping [turns] | | |-----------------|----------------------|-----------------|-----------| | 45.6 | 0.045 | 721 | | | 65.0 | 0.050 | 249 | limited | | 91.5 | 0.055 | 89 | D I | | 94.5 | 0.075 | 81 | Beam-beam | | 98.0 | 0.083 | 73 | limit not | | 101 | 0.073 | 66 | reached | | 103 | 0.055 | 63 | | $$\xi_y \propto 1/E^3$$ naively Strong damping Beam-beam limit pushed upwards $\sigma_x \sigma_y$ from 45.6 GeV to > 98 GeV: **Reduced by factor ~ 1.6** (factor ~2 reduction in vertical beam size) # **Background in the experiments:** #### Other issues: #### Hardware performance - Vacuum system - Magnets - Power supplies - Instrumentation - etc Effects from LHC civil engineering LEP Cryogenics ... excellent without major worries. #### Large radiated power at high energy: #### **Consequences:** - 1) Higher vacuum pressure (no problem) - 2) Possible damage to vacuum system (leaks) #### Vacuum leaks and related downtime: Vacuum system performs very well at highest LEP energies Same true for magnets, power converters, instrumentation, etc... # **Further improvements/options:** RF system - RF voltage at limit of system capability - Slower mini-ramp for better beam stability? - RF stability with lower beam current (2-on-2)? **Optics** - 108/90 and 132/90 optics? Does not look hopeful. RF frequency - Run with lower RF frequency (larger beam size)? (lower luminosity, higher backgrounds) 2-on-2 bunches - Can be worth for lower beam currents... - Better RF stability with lower bunch currents? - RF stability at > 104 GeV looked promising during 4 test fills... 80.5 GeV - Higher luminosity production ### **Summary:** LEP runs in Higgs discovery mode: #### Push beam energy on cost of luminosity - Reduce beam current - Run with small J_x , large σ_x - Mini-ramp to quantum lifetime limit (zero margin in RF voltage) - Loose all fills with RF trips # Luminosity production still excellent: (1999 and 2000 better than 1998) #### Highlights: 6.25 mA # bunches 4 + 4Beam-beam par. 0.083 per IP Max. luminosity $1 \cdot 10^{32} \, \text{cm}^{-2} \text{s}^{-1}$ Vert. emittance 0.1 nmEmittance ratio < 0.5% Max. beam energy **104.4 GeV** Lumin. spread ~1-2 % Turnaround time - Improvements in vertical emittance tuning (dispersion-free steering, luminosity observation, tune working point, turnaround time, ...) - Higher beam-beam limit with strong damping (infer limit $\sim 0.11-0.12$) Higgs 3σ sensitivity at 112 GeV/ c^2 . Hope: 114 GeV/ c^2 . ~ 45 min # The end Reserve slides to follow #### Outline: - Operational strategy - Overview on luminosity and energy performance - *Energy reach* Contributions RF system Damping partition number Increase of bending radius • Luminosity performance Summary Trade-off luminosity / energy Overhead per physics fill (turn-around) Background (tune jump, RF trips) • *Other issues* Hardware performance LHC civil engineering LEP cryogenics system - Further improvements/options - Conclusion # **Quadrupoles contributing to bending:** ### **Vertical emittance:** 1999/2000: $\beta_v^* = 5 \text{ cm}$ $$\left| \boldsymbol{\varepsilon}_{y} \right| \propto \left(C \cdot \boldsymbol{D}_{y}^{rms} \cdot E \right)^{2} + \boldsymbol{K} \cdot \boldsymbol{\varepsilon}_{x} + \dots$$ $\propto E$ (solenoids) - Initial tuning of coupling, chromaticity, orbit, dispersion, ... - Vertical orbit to get smallest RMS dispersion - Coupling to get smallest global coupling - Local dispersion, coupling, β-function at IP Peak luminosity Luminosity balance "Golden orbit" strategy for optimization: (Lumi. measurements: MOP6B04) Trial and error! Complement with: **Dispersion-free steering (DFS):** 1) Measure orbit and dispersion **→** MOP6B03 2) Calculate correctors to minimize both Note: Global correction generally also improves local dispersion/coupling! ### Measured single beam performance of DFS in LEP: # **Vertical optimization:** Reduction of RMS dispersion (DFS + change of separation optics) ## Vertical beam-beam blow-up: Simple model used to fit unperturbed emittance and beam-beam limit: $$\xi_{y} = \sqrt{\frac{1}{\mathbf{A} + \left(\mathbf{B} \cdot \mathbf{i}_{b}\right)^{2}}} \cdot \mathbf{i}_{b}$$ Two fit parameters A and B: $$\mathbf{A} = \left(\frac{2\pi \, e \, f \, \gamma}{r_e}\right)^2 \cdot \frac{\beta_x^*}{\beta_y^*} \cdot \varepsilon_x^0 \cdot \varepsilon_y^0$$ $$B = \frac{1}{\xi_{v}(i_{b} \to \infty)}$$ → Poster TUP6B01. $$\xi_y (asymp) = 0.115$$ $$\epsilon_y (no BB) = 0.1 nm$$ Limited gain in luminosity with ε_v : ### Luminosity decay due to vertical orbit drifts: $$\Delta L \approx 0.3 \cdot 10^{30} \, \text{cm}^{-2} \, \text{s}^{-1}$$ per minute $\Delta \varepsilon \approx 0.002 \, \text{nm}$ per minute Measurement illustrates great sensitivity useful for fast online tuning Luminosity stabilized with the vertical orbit feedback ("autopilot") every 7-8 minutes (3% effect). Both visible from experiments and beam lifetime BCT (faster)! (new operational tool in 1999) ## Fast luminosity monitoring from LEP lifetime (BCT): ### Different regimes: #### 1) Without collision: Compton scattering on thermal photons, beam-gas scattering. $\tau_0 = 32 \text{ h.}$ #### 2) In collision: Radiative Bhabha scattering or beam-beam bremsstrahlung. Observe rate particle loss (BCT) ### Reduction in design vertical dispersion: DFS 1998 tests successful. Residual dispersion measured: Single beam: 1.0 cm Colliding beams: 3.5 cm WHY the difference? Difference explained by separation bumps in odd IP's. 1998 optics: **2.5 cm** 1999 modified: 1.6 cm Used for start-up 1999 optimized: 0.3 cm Tested for 30 physics fills in 7/99 New solutions required change of separator polarities... Trade-off: Small separation bumps (reduce dispersion from bumps) Large separation bumps (reduce dispersion from residual beam-beam kicks) ## New working point for horizontal tune: Strategy from 1998: Put Q_x as high as possible (~ 0.3) Lower Q_v to ~ 0.18 Limits for Q_x : Third integer resonance at 1/3 Sensitivity to background storms closer to 1/3 June 1999: Jump the 1/3 resonance with Q_x to ~ 0.36 Observation: Higher luminosity No background storms with $J_x = 1.5$ ### **Details of vacuum leaks:** # Nb/Cu SC units - Maximum field after conditioning (2000): ## **Understanding the choice of beam energy:** Beam energy **E** Synchrotron radiation losses $U_0 \sim E^4$ Minimal accelerating RF voltage U_{min} required with: $$U_{\min} > U_0$$ RF system with N klystrons (simplified): $$\mathbf{U}_{\mathbf{RF}} = \mathbf{N} \cdot \mathbf{U}_{\mathbf{k}}$$ - Some probability for klystron unavailability (klystron trip rate) - Klystron trips occur mainly on statistical basis (LEP every ~ 20 minutes) - Finite recovery time of 2-3 minutes Energy such that... $U_{min} = (N-2) \cdot U_k$ $\mathbf{U_{\min}} = (\mathbf{N-1}) \cdot \mathbf{U_k} \qquad \qquad \mathbf{U_{\min}} = \mathbf{N} \cdot \mathbf{U_k}$ Fill length set by dump ~ 1.5 h ~ 20 min Fills at highest energy would have very low efficiency (69 min overhead) ### Horizontal beam size: $$\sigma_{x} = \sqrt{\beta_{x} \varepsilon_{x}} \propto \sqrt{\beta_{x} / J_{x}} \cdot D_{x}^{rms} \cdot E$$ Compensate increase with energy (smaller luminosity, larger background): - 1) **High Q_x optics** with smaller D_x^{rms} (D. Brandt et al, PAC99) - 2) **Smaller** β_x^* (2.0 m 1.5 m 1.25 m) - 3) **Increase** damping partition number **J**_x via RF frequency Automatic control $J_x = function (U_{RF})$