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Abstract

The central frequency is an important parameter of the LEP beam energy model. It is
a direct measurement of the LEP circumference and is used to evaluate the contribution
of the quadrupoles to field integral relevant for the LEP beam ebergy. Its evolution over
a run is tracked using direct frequency measurements combined with radial beam position
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1 Introduction

The LEP beam energy is measured with an accuracy of 0.5 MeV using resonant depolarization (RDP)
for beam energies up to 61 GeV [1, 2, 3]. So far the level of transverse polarization observed at higher
energies was not sufficient to perform resonant depolarization. For LEP2 the RDP calibrations are
interpolated to beam energies above 80 GeV using NMR probes [3], the LEP flux-loop [3], the LEP
spectrometer [4] or the relation between the synchrotron tune and the RF voltage [5]. Both the interpo-
lation and the tracking of the beam energy during a LEP run require a proper modelling of the various
sources of energy changes. Terrestrial tides [6, 7] and slow geological deformations [7] modify the LEP
circumference and affect the LEP beam energy in a significant way. The length of the central orbit,
which is equivalent to the LEP circumference, is an important ingredient of the energy model and must
be tracked for each fill of a LEP run.

This note describes the measurement of the central orbit length (or central RF frequency) at LEP.
Systematic effects due to the orbit steering will be addressed and a model for the influence of steering
will be presented. Finally the central frequency data for the LEP runs from 1996 to 1999 will be
reviewed.

2 Beam Energy and Central Frequency

In a storage ring the beam energy is defined by the integral on the bending magnetic fieldB

E =
ec

2π

∮
B ds = 47.7[MeV/Tm]

∮
B ds (1)

with e the electron charge andc the speed of light. For a beam travelling on an orbit with a lengthC the
beam energy can be expressed as

E = Ed + Eq + Eε (2)

whereEd andEq are respectively the contributions of the dipoles and the quadrupoles to the beam
energy. They are given by

Ed =
ec

2π
(BL)d and Eq = − 1

α

C − Cc

C
(3)

Ed depends on the integrated dipole field(BL)d and accounts usually for more than 99.8% of the beam
energy. Eq is a function of the momentum compaction factorα, of the actual orbit lengthC and of
the length of the central orbitCc (the LEP machine circumference). In generalEq does account for
more than±0.2% of the field integral. On the central orbit the beam is centred on average in the
quadrupoles andEq vanishes. Other elements (for example horizontal correctors) can give additional
small contributionsEε to the energy.

At LEP the particles are ultra-relativistic and the lengthC of their orbit is determined by the fre-
quency of the RF systemfRF which are related through

fRF = h
c

C
(4)

with h the RF harmonic number. The RF frequency corresponding to the central orbit is called the
central frequencyf c

RF . At LEP the operating RF frequencyfRF of 352.25 MHz never differs fromf c
RF

by more than±200 Hz. For this reason only the last 4 digits of the (central) RF frequency will be quoted
throughout this document.

At LEP the absolute beam energy calibration is always obtained from resonant depolarization. To
track the beam energy on a fill by fill basis, NMR probes are cross-calibrated with RDP between 40 and
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61 GeV [3]. Ideally the probes should sample the dipole field in an unbiased way and be able to track
Ed. Since NMR probes are not sensitive toEq (andEε), the evolution ofCc must be known to compare
NMRs and RDP data over long time intervals and to model the beam energy for every fill.Cc is usually
tracked using the beam position measurement in the LEP arcs [7, 2, 3]. The average radial beam position
at up to 240 arc monitors, denoted byXarc, is related to the circumference and RF frequency through
the horizontal dispersionDA at the monitors :

∆Xarc = −DA

α

∆Cc

Cc
� 0.11 ∆Cc (5)

∆Xarc =
DA

α

∆f c
RF

f c
RF

� 8.4[µm/Hz] ∆f c
RF (6)

The numerical coefficients may vary by a few percent for different optics. Direct measurements of
the central frequency are used to obtain an absolute calibration ofXarc. It is not necessary to know
the absolute value ofCc (resp. f c

RF ) with high accuracy since a constant measurement offset can be
absorbed in the definition ofEd without significant bias to the beam energy model.

For a perfectly aligned machine the definition of the central frequency (and of the central orbit
length) is unambiguous. It corresponds to the RF frequency (or orbit length) for which the beam is
centred in all quadrupoles. In a real machine with misaligned magnets the beam is travelling on a
closed orbit that is in general never centred in each quadrupole. In such a case the central frequency
corresponds to the RF frequency for which the beam is centred on average in the quadrupoles. Since the
central frequency must be measured with the beam, the actual measurement result may depend on the
beam steering through the quadrupoles. The study of the sensitivity of the central frequency on details
of the closed orbit is the main subject of this note.

3 Direct Central Frequency Measurements

Two experimental techniques are used to determine the central frequency at LEP. Both methods use the
fact that the tune is independent of the sextupole strength (or chromaticity) when the beam is centred
in the sextupoles. At LEP each sextupole-quadrupole pair is mounted on one girder and the magnetic
axis of the two magnets are aligned with a tolerance of 0.2 mm RMS. Centring the beam in the sex-
tupoles or the quadrupoles is therefore (almost) identical. In LEP there are 240 SF sextupoles installed
next to horizontally focusing quadrupoles and 256 SD sextupoles installed next to vertically focusing
quadrupoles.

The relative alignment between sextupoles and quadrupoles sets an intrinsic limit to the absolute
accuracy of the central frequency. The error on the central frequencyσf is related to the alignment RMS
σSQ by

σf � fRF
σSQ

ρ̄
√

NS

� 4.6[Hz/mm] σSQ (7)

whereρ̄ is the average bending radius,fRF is the typical (central) RF frequency andNS is the number of
sextupoles. The alignment accuracy ofσSQ � 0.2 mm leads to an uncertainty on the central frequency
of approximatively± 1 Hz.

3.1 Measurement Techniques

A first measurement technique uses the principle ofRF frequency shaking [8]. The RF frequency is
repeatedly swept according to a predefined function over a range of 50 to 100 Hz. If the chromaticity is
non-zero the horizontal tuneQh is modulated by the RF frequency function as shown in Figure 1.Qh is
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Figure 1: Time dependence of the horizontal tuneQh during a central frequency measurement by RF
frequency shaking.Qh follows the modulation of the RF frequency which is repeatedly cycled between
two values, with a short plateau at the lower frequency. The amplitude of the tune change is directly
proportional to the chromaticity and to the frequency sweep. The periodic tune perturbations (spikes)
are due to the 14.4 second SPS cycle.
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Figure 2: Central frequency measurement using the method of RF frequency shaking. The tune de-
pendence on RF frequency is reconstructed for each measurement, the slope being proportional to the
chromaticityQ′

h (see example of Figure 1). At the crossing point of all measurements the beam is cen-
tred in the sextupoles since the tune is independent ofQ′

h : this frequency setting corresponds to the
central frequency (only the last 4 digits are given).
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Figure 3: Evolution of the horizontal tuneQh during a central frequency measurement by sextupole
modulation. The step-wise changes ofQh correspond to a chromaticity modulation of 8 units which
is repeated twice for each RF frequency setting. At the start of the measurement the sextupoles are
modulated 5 times to obtain a stable cycle. The RF frequency steps are indicated by arrows. The tune
change almost vanishes for a frequency trim of -60 Hz. The periodic perturbations ofQh are due to the
14.4 second SPS cycle.
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Figure 4: Horizontal tune change∆Qh due to the chromaticity modulation as a function of the RF
frequency. The data corresponds to the measurement shown in Figure 3. The error on∆Qh is smaller
than the symbol size. The central frequency corresponds to∆Qh = 0.
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continuously tracked in a PLL (Phase Locked Loop) mode and its dependence on RF frequency can be
reconstructed from the known frequency function using a cross-correlation analysis. The measurement
is repeated for different chromaticity settings to find the frequency setting for whichQh is independent
of the chromaticity as indicated in Figure 2.

A second measurement technique is based on the principle ofsextupole modulation where the chro-
maticity is varied between two settings typically separated by about 5 to 10 units. The tune change
corresponding to this chromaticity difference is measured for a few settings of the RF frequency as
shown in Figure 3. A straight line fit to the tune change versus RF frequency yields the central fre-
quency (Figure 4).

The accuracy of the two methods varies between 0.2 and 2 Hz and depends on beam conditions and
machine stability. The measurement technique based on RF frequency shaking is more delicate and
requires a very stable tune over a time interval of at least 15 minutes. Slow tune drifts bias the crossing
point of the curves shown in Figure 2. For this reason the second method, which is faster and more
robust, has been preferred for LEP2.

4 Central Frequency and Closed Orbit Distortions

When the ideal orbit is distorted by a single dipole kickθ, the closed orbit distortionu is a function of
the path lengths along the ideal orbit given by :

u(s) =

√
βu(s0)βu(s)

2 sin(πQ)
cos(|φu(s) − φu(s0)| − πQ) θ (8)

βu(s) andφu(s) are the betatron function and the betatron phase.Q is the machine tune.s0 is the
longitudinal position of the kickθ. This expression is valid in both transverse planes (u = x, y). A
single horizontal kickθ does not add to the bending of the dipole magnets since the kick is compensated
by the lattice on the closed orbit. This statement can be generalised for a set of correctors as long as
the kicks are incoherent and do not all add up systematically in the same direction, in which case they
would contribute directly to the dipole field.

In a section where the curvatureρ is locally constant, the beam position can be expressed in polar
coordinatesr = ρ + u andφ. While the path length on the ideal orbit isds = ρdφ, the path lengthdl on
the distorted orbit becomes (Figure 5) :

dl =

√
r2 +

(
dr

dφ

)2

dφ (9)

The change of path lengthdL due to the distortion

dL = dl − ds =

√
r2 +

(
dr

dφ

)2

dφ − ds (10)

ρ

dl

u ds

dφ

Figure 5: Path lengths on the ideal (ds) and on the
distorted (dl) orbit.
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can be expanded to yield

dL ≈
(

u

ρ
+

1

2

(
du

ds

)2
)

ds (11)

where only the leading terms have been kept. The total path length changeΛ due to the closed orbit
distortion is obtained by integration over the ring,

Λ =

∮
dL = Λ1 + Λ2 (12)

whereΛ has been split into a linear lengtheningΛ1 and a quadratic lengtheningΛ2 [9] :

Λ1 =

∮
u

ρ
ds Λ2 =

1

2

∮ (
du

ds

)2

ds (13)

Λ1 is related to the orbit position shift andΛ2 to the orbit RMS, and in generalΛ2 << Λ1. WhenΛ1

is evaluated for the closed orbit distortion given by Equation 8, it reduces to a simple expression which
depends only on the local dispersionDu and the kickθ [9, 10] :

Λ1 = Du(s0) θ (14)

Only horizontal correctors in the arcs and in the dispersion suppressors contribute toΛ1 since the dis-
persion vanishes in the straight sections and in the vertical plane. For a combination ofNC kicks θj at
locations with horizontal dispersionDxj we obtain :

Λ1 =

NC∑
i

Dxjθj (15)

because the orbit displacements add up linearly as long as they are not excessively large.
Earlier simulations of the effect of correctors on the beam energy have shown that the small con-

tributions due toΛ2 are cancelled by the sextupoles [10]. The RF frequency constrains the length of
the orbit to remain constant and the beam must change its average radial position to accommodate the
lengtheningΛ1. This in turn leads to a change of the average beam energyE :

δE

E
= − 1

α

Λ1

C
= − 1

αC

NC∑
i

Dxjθj (16)

As a consequence of such a radial movement one might naively expect that themeasured central fre-
quency should change by

δf c = −Λ1

C
f c

RF (17)

sinceδf c is exactly the frequency change that must be applied to compensate the radial movement due
to Λ1 and re-centre the beam in the quadrupoles. The shiftδf c would be a purely experimental bias due
to the fact thatf c

RF must measured with the beam. Such an apparent change of the measured central
frequency would imply that energy changes due to corrector settings andf c

RF are strongly correlated and
must be treated carefully in the energy model to avoid double counting of corrections. This argument
does not take into account the detailed effect of the closed orbit change and the way the sextupole sample
the orbit.
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4.1 Model of the Influence of Orbit Steering on Central Frequency Measurements

To understand the relation between orbit kicks and central frequencymeasurements we must analyse
the tune changes induced by the orbit distortions in the sextupoles. To first order the horizontal beam
position changeδxi at theith sextupole receives contributionsδxβ

i from the betatron oscillation andδxδp
i

from the radial movement

δxi = δxβ
i + δxδp

i =

NC∑
j

√
βxiβxj

2 sin(|πQ|) cos(|∆φij | − πQ) θj + Dxi
δE

E
(18)

where∆φij is the betatron phase betweenith sextupole andjth corrector. δE
E

is the relative energy
change given in Equation 16.βxi is the horizontal betatron function andDxi is the horizontal dispersion
at theith sextupole. The horizontal tune change due to the position shifts in theNS sextupoles is :

δQθ =
1

4π

NS∑
i

K2iliβxiδxi (19)

K2i is the strength andli the length of theith sextupoles. Substituting the expressions forδxi andδE/E
the tune change can be written

δQθ = −Q′
S

NC∑
j

Dxjθj

αC
+

NC∑
j

√
βxjPSjθj (20)

with Q′
S the contribution of the sextupoles to the horizontal chromaticity

Q′
S =

1

4π

NS∑
i

K2iliβxiDxi (21)

and

PSj =
1

8π sin(|πQ|)
NS∑
i

K2iliβ
3/2
xi cos(|∆φij| − πQ) (22)

Horizontal and vertical chromaticity trims (increments) are given by

∆Q′
h =

1

4π

(
∆KSF

2

NSF∑
i

liβxiDxi + ∆KSD
2

NSD∑
i

liβxiDxi

)
(23)

∆Q′
v = − 1

4π

(
∆KSF

2

NSF∑
i

liβyiDxi + ∆KSD
2

NSD∑
i

liβyiDxi

)
(24)

with ∆K
SF (D)
2 the strength changes of theNSF (D) sextupoles belonging to the SF(D) family. For a

purely horizontal chromaticity change (∆Q′
v = 0) the strengths of the SD and SF families must satisfy :

r =
∆KSD

2

∆KSF
2

= −
∑NSF

i liβyiDxi∑NSD

i liβyiDxi

(25)

Following the orbit change due to the steering, the shiftδf c of the measured central frequency is
determined by the condition that the total tune change due to the frequency change and kicks

∆Qtot = − δf c

αfRF
Q′

S + δQθ (26)
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should be independent of the chromaticity setting. For a horizontal chromaticity change (dQ ′
S = dQ′

h)
this conditions can be expressed as :

d(∆Qtot)

dQ′
S

= 0 = − δf c

αfRF
−

NC∑
j

Dxjθj

αC
+

NC∑
j

√
βxj

dPSj

dQ′
S

θj (27)

Using Equations 23 and 25 and solving forδf c we obtain :

δf c =

NC∑
j

θjFj =

NC∑
j

θj(F
δ
j + F β

j ) (28)

where

Fδj = −fRF
Dxj

C
(29)

Fβj = αfRF βxj

BSF
j + rBSD

j

ASF + rASD
(30)

ASF (D) =

NSF (D)∑
i

liβxiDxi (31)

B
SF (D)
j =

1

2π sin(|πQ|)
NSF (D)∑

i

liβ
3/2
xi cos(|∆φij| − πQ) (32)

The expression in Equation 28 is a simple linear function of the kicks weighted by an optics dependent
factorF . Equation 28 is only valid in the limit of small orbit variations (RMS change≤ few mm). The
term associated toF δ corresponds to the effect of the orbit lengthening (see also Equation 17) :

NC∑
j

θjF
δ
j = −Λ1

C
f c

RF (33)

The sensitivity factorsF β, F δ andF can be evaluated directly for any optics. They are shown for
the102◦/90◦ and60◦/60◦ optics in Figures 6 and 7. The contributionF β due to the betatron oscillations
cancels on average the systematic contribution ofF δ which vanishes in areas where the dispersion is
zero. When it is averaged over all correctors,F is very close to 0. The frequent sign changes of
F prevent large shifts inf c

RF when kicks from correctors or misaligned quadrupoles generate large
lengtheningsΛ1 because they are oriented preferentially in one direction (inwards or outwards).

The shift of the closed orbit also influences the average beam position in the arcs that is used to track
the central frequency for every fill. The shift ofXARC is :

δXARC =
∑

j

θjGj (34)

where

Gj = −DxjDA

αC
+

√
βxjβA

2NM sin(|πQ|)
NM∑

i

cos(|∆φij | − πQ) (35)

βA is the horizontal betatron function andDA the horizontal dispersion at the arc BPMs.NM is the total
number of monitors.
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Figure 6: Sensitivity factorsF β, F δ andF for all correctors with the102◦/90◦ optics (β∗
x = 1.5 m).

4.2 Model Tests with Simulations and Experiments

The validity of the analytical model was tested with simulations using the MAD program [11]. For
a given optics and machine misalignment, the orbit is corrected using different corrector settings to
RMS values ranging between 0.3 and 0.7 mm which are typical for LEP. For each correction the central
frequency obtained by simulating the real measurement process is compared to the shift predicted by
Equation 28. Figure 8 shows the results for two different LEP lattices. The predicted and measured
central frequency shift are always well correlated. Obviously the absolute value of the central frequency
cannot be predicted from the model since the quadrupole misalignment is unknown.

The central role of sextupoles in protecting the central frequency measurement against biases from
corrector settings can be demonstrated by the simulation of a closed bump shown in Figure 9. A hori-
zontal closed bump is arranged over two arc cells with a sextupole close to the maximum of the bump.
The linear orbit lengtheningΛ1 generated by the correctors is large and scales with the bump amplitude.
Due to the non-linearity of the sextupole, the bump must be precisely re-matched for each amplitude.
When the sextupole is on at the nominal strength, the central frequency depends only weakly on the
bump amplitude, but as soon as the sextupole is switched off, the central frequency shows a strong de-
pendence on bump amplitude. This simulation shows that the central frequency is not very sensitive to
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steering as long as the sextupoles sample the orbit sufficiently in areas where the dispersion is non-zero
and where corrector kicks can produce a lengtheningΛ1.

In 1998 an experiment was carried out to test the validity of the model in LEP. The central frequency
was first measured over a time interval of one hour and found to be stable within the measurement
accuracy after correction for the tidal distortions. The orbit was then corrected towards a new target
orbit for which a central frequency shift of -1 Hz was predicted from the model. A naive estimate based
only on the orbit lengtheningΛ1 (Equations 17 and 33) would have yielded a change of -7.5 Hz. The
measurement in in good agreement with the complete model.
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Figure 7: Sensitivity factorsF β, F δ andF for all correctors with the60◦/60◦ optics.
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Figure 8: Simulation of the influence of corrector settings on the measured central frequency for a
60◦/60◦ and a102◦/90◦ optics with a fixed horizontal quadrupole misalignment. The shift of the central
frequency measurement (vertical axis) is shown as a function of the change predicted from Equation 28.
Each points corresponds to a different corrector setting. The model predicts the relative changes with a
good accuracy.
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Figure 9: Simulation of the measuredf c
RF shift δf c due to a closed local bump in the arcs for a102◦/90◦

optics. The local horizontal bump extends over two arc cells with an SF sextupole close to the bump
maximum. The shiftδf c is given as a function of the bump amplitude when the sextupole in the bump
is on or off. When the sextupole is off the orbit lengthening produces largef c

RF shifts.
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Figure 10: Experimental test of the influence of orbit steering on thef c
RF measurement. For the last data

point the orbit was corrected towards a different target and from the resulting corrector settings change
a shift of -1 Hz was predicted from the model (Equation 28), in good agreement with the measurement.
If only the orbit lengthening effect is taken into account (F δ in Equation 28) the shift should be -7.5 Hz,
in clear contradiction to the measurement.
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5 Central Frequency at LEP2

The central frequency data for the LEP runs from 1996 to 1999 was reanalysed and corrected for the
measurement shifts due to changes of corrector settings and closed orbits over the year. All data is
corrected for the periodic effects of the terrestrial tides [6]. The evolution of the central frequency over
one year is obtained primarily from theXarc data which is available for almost every fill and normalised
to the central frequency data. From the known corrector settings, the bias onXarc (Equation 34) and
onf c

RF (Equation 28) can be easily evaluated. Only the relative change of the corrections over each run
was applied. Long term drifts and absolute shifts of the corrections were not taken into account : to be
meaningful an absolute correction would also require input from the quadrupole kicks due to alignment
errors. The corrections lead to a reduced fill-to-fill scatter of theXarc data, particularly for 1996 and
1997 where the reference orbits (and therefore also the corrector settings) for physics were changed
frequently. The agreement between the evolutions ofXarc andf c

RF is also improved.
The horizontal quadrupole movements over a run are unknown and delicate to unfold. Systematic

drifts of f c
RF measurements due to ground motion must be estimated by comparingXarc and direct

measurements over a run as they will be affected differently by the kicks from moving quadrupoles.
Inspection of the data shows that direct measurements andXarc agree within±2 Hz. Table 1 gives the
momentum compaction factor and the sensitivity of the beam energy to central RF frequency at 100
GeV. Central frequency errors of±2 Hz lead to beam energy errors of 3 to 4 MeV at 100 GeV. The
absolute normalisation of the beam energy is however always obtained from RDP calibrations and the
central frequency is only used to track the evolution of the energy. Therefore systematicf c

RF errors
would introduce hardly any bias provided the RDP calibrations sample a LEP run evenly. Systematics
deviations off c

RF would result in a scatter between RDP data and the beam energy model. If the RDP
calibrations do not cover some parts of a run, the contribution off c

RF to the systematic error on the beam
energy should not exceed the quoted 3 to 4 MeV.

5.1 LEP Run 1996

Operation of the LEP2 started in 1996. Detector calibrations were performed at 45 GeV with a108◦/60◦

optics. This optics was abandoned after a few days because its dynamic aperture was too small. LEP was
then operated for most of the year with a90◦/60◦ optics. The beam energies were 80.5 and 86 GeV. The
last two weeks of the 1996 run were used to test a108◦/90◦ optics. Energy calibration were performed
with the 90◦/60◦ optics. The evolution of the central frequency over the year is shown in Figure 11.
The data is obtained fromXarc and it has been scaled to actual central frequency measurements. All
data has been corrected for the evolution of horizontal corrector settings. The difference of central
frequency with and without correction for the effect of correctors is shown in Figure 12. The width of
the distribution is approximatively 1 Hz.

Optics α (×104) |∆E/∆f c
RF |

(MeV/Hz at 100 GeV)

60◦/60◦ 3.77 0.75
90◦/60◦ 1.86 1.53
101◦/45◦ 1.50 1.89
102◦/90◦ 1.56 1.82
108◦/60◦ 1.35 2.10
108◦/90◦ 1.43 1.99

Table 1: Momentum compaction factorα and sensitivity of the beam energy to (central) RF frequency
changes at 100 GeV. For the same phase advanceα may vary by about 1% for different optics versions
due to small phase adjustments.
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5.2 LEP Run 1997

In 1997 LEP was operated for most of the year with a90◦/60◦ optics. During the last two weeks of the
run a102◦/90◦ was tested. For most of the fills the beam energy was 91.5 GeV. Energy calibration were
performed with a60◦/60◦ optics. The evolution of the central frequency over the year is shown in Fig-
ure 13. The data is obtained fromXarc and it has been scaled to actual central frequency measurements.
All data has been corrected for the evolution of horizontal corrector settings. The difference of central
frequency with and without correction for the effect of correctors is shown in Figure 14. The width of
the distribution is approximatively 2 Hz.

5.3 LEP Run 1998

In 1998 LEP was operated all the year at 94.5 GeV with a102◦/90◦ optics. Energy calibration were
performed with a60◦/60◦ optics. The evolution of the central frequency over the year is shown in
Figure 15. The data is obtained fromXarc and it has been scaled to actual central frequency measure-
ments. All data has been corrected for the evolution of horizontal corrector settings. While the central
frequency measurements for electrons are in good agreement with theXarc data, the measurements per-
formed with positrons at high energy show abnormal differences with respect to the electrons and to the
orbit data. No explanation for this behaviour has been found so far and the abnormal positron data has
been ignored. The analysis of the resonant depolarization and NMR data seems to confirm this hypothe-
sis. The difference of central frequency with and without correction for the effect of correctors is shown
in Figure 14. The width of the distribution is approximatively 1 Hz. A small peak in the histogram
corresponding to a change of approximatively -5 Hz is associated with the orbit data from the first fills
in the year before day 150.

5.4 LEP Run 1999

In 1999 LEP was operated all the year with a102◦/90◦ optics. The beam energy was progressively
increased from 96 to 101 GeV during the run. A new algorithm for simultaneous correction of the
dispersion and the orbit (so-called Dispersion Free Steering) was used for the first time throughout the
year. It resulted in smoother corrector strength distributions and in smaller corrector changes throughout
the year. This lead to a significant reduction of the fill-to-fill spread of theXarc measurements. Energy
calibration were performed with a60◦/60◦ and a101◦/45◦ optics. The evolution of the central frequency
over the year is shown in Figure 17. The data is obtained fromXarc and it has been scaled to actual
central frequency measurements. All data has been corrected for the evolution of horizontal corrector
settings. The difference of central frequency with and without correction for the effect of correctors is
shown in Figure 14. The width of the distribution is approximatively 1 Hz.
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Figure 11: Evolution of the central RF frequency during the 1996 LEP run. The open points are obtained
from Xarc and are normalised to the actual central frequency measurements (filled triangles). LEP was
mostly operated with a90◦/60◦ optics, except for the first and last periods where a108◦/60◦ and a
108◦/90◦ optics were tested.
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Figure 12: Distribution of the central frequency shift due to the correction for changes in corrector
settings for 1996. There is one entry for each fill.
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Figure 13: Evolution of the central RF frequency during the 1997 LEP run. The open points are obtained
from Xarc and are normalised to the actual central frequency measurements (filled triangles). With the
exception of the last period, LEP was operated with a90◦/60◦ optics.
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Figure 14: Distribution of the central frequency shift due to the correction for changes in corrector
settings for 1997. There is one entry for each fill.
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Figure 15: Evolution of the central RF frequency during the 1998 LEP run. The open points are obtained
from Xarc and are normalised to the actual central frequency measurements (filled triangles).
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Figure 16: Distribution of the central frequency shift due to the correction for changes in corrector
settings for 1998. There is one entry for each fill. The strangef c

RF results for positrons have not been
taken into account.
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Figure 17: Evolution of the central RF frequency during the 1999 LEP run. The open points are obtained
from Xarc and are normalised to the actual central frequency measurements (filled triangles).
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Figure 18: Distribution of the central frequency shift due to the correction for changes in corrector
settings for 1999. There is one entry for each fill.
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6 Summary

The influence of orbit steering on the determination of the central frequency from direct measurements
and from the beam position in the LEP arcs was described by an analytical model. An important outcome
of the model is the explanation of the relatively weak sensitivity of the central frequency measurement
on changes of corrector settings or quadrupole movements, which is due to the good sampling of the arc
orbit by the sextupoles. The validity of the model was confirmed by simulations and experiments. The
central frequency data for the LEP2 runs between 1996 and 1999 was reviewed in the light of this model.
The RMS spread of the corrections was in the range of 1 to 2 Hz. The corrected central frequency data
exhibits a reduced fill-to-fill scatter, indicating that some of this scatter was indeed due to orbit steering.
The systematic error on the central frequency over a run is estimated to be at most±2 Hz.
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